Всё о метрологии

Тут можно читать онлайн Всё о метрологии - бесплатно полную версию книги (целиком) без сокращений. Жанр: Прочая научная литература. Здесь Вы можете читать полную версию (весь текст) онлайн без регистрации и SMS на сайте лучшей интернет библиотеки ЛибКинг или прочесть краткое содержание (суть), предисловие и аннотацию. Так же сможете купить и скачать торрент в электронном формате fb2, найти и слушать аудиокнигу на русском языке или узнать сколько частей в серии и всего страниц в публикации. Читателям доступно смотреть обложку, картинки, описание и отзывы (комментарии) о произведении.

Всё о метрологии краткое содержание

Всё о метрологии - описание и краткое содержание, автор Неизвестный Автор, читайте бесплатно онлайн на сайте электронной библиотеки LibKing.Ru

Всё о метрологии - читать онлайн бесплатно полную версию (весь текст целиком)

Всё о метрологии - читать книгу онлайн бесплатно, автор Неизвестный Автор
Тёмная тема
Сбросить

Интервал:

Закладка:

Сделать

Систематическая погрешность, остающаяся после введения поправок на ее наиболее существенные составляющие включает в себя ряд элементарных составляющих, называемых неисключенными остатками систематической погрешности . К их числу относятся:

• погрешности определения поправок;

• погрешности, зависящие от точности измерения влияющих величин, входящих в формулы для определения поправок;

• погрешности, связанные с колебаниями влияющих величин (температуры окружающей среды, напряжения питания и т.д.).

Перечисленные погрешности малы и поправки на них не вводятся.

Для каждого данного измерения элементарные составляющие систематической погрешности имеют вполне определенные значения, но эти значения нам неизвестны. Известно лишь, что в массе однотипных измерений эти составляющие лежат в определенных границах картинка 160 или имеют определенные средние квадратические отклонения картинка 161. В первом случае для неисключенных остатков следует принять равномерное распределение, во втором — нормальное. Дисперсия суммы неисключенных остатков систематической погрешности определяется как сумма их дисперсий и поэтому

63 где m 1 число равномерно распределенных и m 2 число нормально - фото 162, (63)

где m 1— число равномерно распределенных и m 2 — число нормально распределенных элементарных составляющих.

Глава 6. МАТЕМАТИЧЕСКАЯ ОБРАБОТКА ИСПРАВЛЕННЫХ РЕЗУЛЬТАТОВ ИЗМЕРЕНИЙ

Экспериментатор должен быть достаточно ленив, чтоб не делать лишнего

6.1. Обработка результатов прямых равнорассеянных наблюдений

Прямыми называются измерения, в результате которых искомое значение физической величины находят непосредственно из опытных данных. Прямые измерения осуществляются путем многократных наблюдений. Результаты наблюдений X 1, X 2,…, X n называются равнорассеянными , если они являются независимыми, одинаково распределенными случайными величинами. Равнорассеянные результаты получают при измерениях, проводимых одним наблюдателем или группой наблюдателей с помощью одних и тех же методов и средств измерений в неизменных условиях внешней среды.

Обработка результатов наблюдений в соответствии с методикой прямых измерений с многократными наблюдениями производится в следующем порядке:

1. Путем введения поправок исключают известные систематические погрешности из результатов наблюдений.

2. Вычисляют среднее арифметическое картинка 163 исправленных результатов наблюдений, принимая его за оценку истинного значения измеряемой величины.

3. Вычисляют оценку s x среднеквадратического отклонения результатов наблюдения и оценку картинка 164 среднеквадратического отклонения среднего арифметического.

4. Проверяют гипотезу о нормальности распределения результатов наблюдения. Если число результатов n >50, используют критерий Пирсона χ², при 15< n <50 — составной критерий. Уровень значимости выбирается из интервала 0.02–0.10. При n <15 нормальность распределения не проверяется.

5. Если результаты наблюдений распределены нормально, то определяют наличие грубых погрешностей и промахов и если последние обнаружены, соответствующие результаты отбраковывают и повторяют вычисления.

6. Вычисляют доверительные границы случайной погрешности при доверительной вероятности P =0.95, а также при P =0.99, если измерения в дальнейшем повторить нельзя.

7. Определяют границы неисключенной систематической погрешности результата измерений. В качестве составляющих неисключенной систематической погрешности рассматривают погрешности метода, погрешности средств измерений (например пределы допускаемой основной и дополнительных погрешностей, если их случайные составляющие пренебрежимо малы) и погрешности, вызванные другими источниками. При суммировании составляющих неисключенные систематические погрешности средств измерений рассматриваются как случайные величины. Если их распределение неизвестно, то принимается равномерное распределение и тогда границы неисключенной систематической погрешности результата при числе составляющих m >4 определяют как

Всё о метрологии - изображение 165, (64)

где θ i — границы отдельных составляющих общим числом m ; k — коэффициент, равный 1.1 при доверительной вероятности P =0.95 и 1.4 при P =0.99.

8. Вычисляют доверительные границы погрешности результата. Если выполняется условие картинка 166, то систематической погрешностью можно пренебречь и определить доверительные границы погрешности результата как доверительные границы случайной погрешности Всё о метрологии - изображение 167 при P =0.95 (и при P =0.99); если же выполняется условие картинка 168, то можно пренебречь случайной погрешностью и тогда Δ=θ при P =0.95 (и P =0.99).

Если эти условия не выполняются, то доверительные границы погрешности результата определяют по формуле Δ= K * s Σ, где коэффициент K находят из выражения

Всё о метрологии - изображение 169 (65)

а среднеквадратическое общей погрешности результата Всё о метрологии - изображение 170 находят квадратическим суммированием дисперсии случайной картинка 171 и систематической s ² θ погрешности результата, определяемой формулой (63). Границы случайной δ и систематической θ погрешности, входящие в формулу (65), необходимо выбирать при одной и той же доверительной вероятности ( P =0.95 или P =0.99).

9. Результат измерения записывают в виде картинка 172, а при отсутствии сведений о виде функции распределения составляющих погрешности и необходимости дальнейшей обработки результатов и анализа погрешностей — в виде Если полученный при измерениях результат в дальнейшем используется для - фото 173.

Если полученный при измерениях результат в дальнейшем используется для анализа и сопоставления с другими результатами или является промежуточным для нахождения других величин, то необходимо указать раздельно границы систематической погрешности и среднеквадратическое отклонение случайной погрешности: картинка 174.

Читать дальше
Тёмная тема
Сбросить

Интервал:

Закладка:

Сделать


Неизвестный Автор читать все книги автора по порядку

Неизвестный Автор - все книги автора в одном месте читать по порядку полные версии на сайте онлайн библиотеки LibKing.




Всё о метрологии отзывы


Отзывы читателей о книге Всё о метрологии, автор: Неизвестный Автор. Читайте комментарии и мнения людей о произведении.


Понравилась книга? Поделитесь впечатлениями - оставьте Ваш отзыв или расскажите друзьям

Напишите свой комментарий
x