Сара Драй - Воды мира. Как были разгаданы тайны океанов, атмосферы, ледников и климата нашей планеты
- Название:Воды мира. Как были разгаданы тайны океанов, атмосферы, ледников и климата нашей планеты
- Автор:
- Жанр:
- Издательство:Альпина нон-фикшн
- Год:2021
- Город:Москва
- ISBN:9785001394938
- Рейтинг:
- Избранное:Добавить в избранное
-
Отзывы:
-
Ваша оценка:
Сара Драй - Воды мира. Как были разгаданы тайны океанов, атмосферы, ледников и климата нашей планеты краткое содержание
Рассказывая о ее становлении, Сара Драй обращается к историям этих людей – историям рискованных приключений, бунтарства, захватывающих открытий, сделанных в горных экспедициях, в путешествиях к тропическим островам, во время полетов в сердце урагана. Благодаря этим первопроходцам человечество сумело раскрыть тайны Земли и понять, как устроена наша планета, как мы повлияли и продолжаем влиять на нее.
Понимание этого особенно важно для нас сегодня, когда мы стоим на пороге климатического кризиса, и нам необходимо предотвратить наихудшие его последствия.
Воды мира. Как были разгаданы тайны океанов, атмосферы, ледников и климата нашей планеты - читать онлайн бесплатно ознакомительный отрывок
Интервал:
Закладка:
Конечно, Ричардсон признавал, что науке пока не хватает знаний, чтобы свести все характеристики атмосферы к простым уравнениям, и некоторые особенности погоды требуют дальнейшего изучения. Поэтому он ратовал за проведение исследований в водном «фундаменте» великого метеорологического «театра», в частности за изучение так называемых вихрей – мощных, закручивающихся спиралью потоков воды, которые образуются в крупных морских течениях, таких как Гольфстрим. Турбулентность была слишком значимым и интересным явлением, чтобы оставлять его без внимания. В то же время можно – и даже необходимо – было приступать к решению численных задач, не дожидаясь, пока это явление станет полностью понятно. Ричардсон начал исследования турбулентности с наблюдений за воздушными шарами и струями дыма, затем продолжил с помощью мысленных экспериментов и, наконец, оказался вместе со Стоммелом на берегу озера с миской нарезанного пастернака в руках.
Стоя в конце причала и бросая в воду по два кусочка пастернака, Ричардсон и Стоммел смотрели, как те удаляются друг от друга, и пытались выявить закономерность. На основе своих наблюдений за 45 парами пастернака, дрейфующими по поверхности шотландского озера, они пришли к выводу, что в озерной воде энергия распространяется точно так же, как в атмосфере. Этот результат перекликался со статьей, опубликованной Ричардсоном почти 30 лет назад, в 1920 г., в которой было выдвинуто контринтуитивное предположение, что вихри действуют как «термодинамические двигатели в пребывающей под воздействием силы тяжести атмосфере», которые увеличивают, а не рассеивают энергию системы [259] L. F. Richardson, «The Supply of Energy from and to Atmospheric Eddies,» Proceedings of the Royal Society A97 (1920): 354–373.
. Совместная статья Ричардсона и Стоммела вошла в историю как своей дерзкой первой строкой («Наши наблюдения за относительным движением двух плавающих кусочков пастернака показали»), так и заключительным выводом о том, что в атмосфере и океане наблюдаются схожие формы турбулентной диффузии [260] L. F. Richardson and Henry Stommel, «Note on Eddy Diffusion in the Sea,» Journal of Meteorology 5 (1948): 238–240.
. При этом ученые отметили важную роль масштаба: то, что происходит в ванне с водой, значительно отличается от того, что происходит в озере, а происходящее в океане еще сложнее.
Но не статья о пастернаке, а новая публикация Стоммела, посвященная Гольфстриму, вызвала всплеск интереса к этой теме: началась новая эра исследований этого океанического течения, что, в свою очередь, привело к более глубокому пониманию общих принципов циркуляции воды в океанах. Однако вопросам о роли турбулентности в циркуляции океана, поднятым Стоммелом после встречи с Ричардсоном, пришлось ждать своего часа. Эти проявления движения воды невозможно было ни объяснить, ни игнорировать – они были подобны призрачному морскому существу, которое видели лишь мельком и об истинной природе которого ничего не было известно. А пока Стоммел охватывал мысленным взором разномасштабные явления – от круговорота воды в океаническом бассейне, где Гольфстрим был всего лишь одной из составляющих, до тех сил, которые заставляли плыть по той или иной траектории кусочки пастернака, – и пытался связать их воедино. Но потребовались годы и даже десятилетия, прежде чем эти две модели океана – в большом и малом масштабе – сложились в понимании океанографов в единое целое. Когда это произошло, забавная попытка исследовать турбулентную диффузию при помощи кусочков пастернака на шотландском озере предстала первым важным шагом к глобальному пониманию океана. Но пока все это было делом будущего.
Вода в океане создает мощнейшее давление. Толща воды всего в 10 м давит с той же силой, что и вся толща земной атмосферы. На глубине 2 км давление воды возрастает до 200 земных атмосфер. Именно поэтому глубины земного океана остаются почти таким же малоизученным местом, как поверхность Луны. И именно поэтому океанографам потребовалось так много времени, чтобы объяснить те эмпирические знания, которые известны любому моряку. Опытные моряки знают, что вода движется очень быстро, одновременно упорядоченно и хаотично; они знают, где какие течения проходят и где какие ветры дуют; и они также знают, что океан очень изменчив. Но эти знания не дают объяснения тайнам водной стихии. Чтобы проникнуть в эти тайны, нужны измерительные приборы и идеи.
Долгое время океан, который знали моряки, с его хаотичным движением, не соответствовал описаниям, сделанным учеными. На протяжении большей части человеческой истории сведения об океанах собирали, бросая за борт парусных кораблей приборы, привязанные к тросам. Неудивительно, что полученные данные ограничивались в основном поверхностными течениями и ветрами. Бутылки, брошенные в воду, могли дать примерное представление о скорости движения воды в самом верхнем слое, но добыть сведения о более глубоких слоях было почти невозможно. Соленая вода, давление, сильные течения и морские обитатели будто сговорились, чтобы сделать бóльшую часть существующих приборов бесполезными. Если пустить зонд по течению, как отследить его перемещение и потом найти среди океанских просторов? А как узнать хоть что-то о глубоководных течениях? Из-за всех этих трудностей людям было мало что известно об океанских глубинах. В результате те, кто изучал океаны, долгое время считали, что ничего особенного там не происходит.
Несмотря на это, многие знания об океане были получены эмпирическим путем. Ключевым эпизодом в истории изучения океанических течений стало открытие, сделанное в 1751 г. Генри Эллисом, капитаном английского корабля, на котором перевозили рабов. Эллис заметил, что, если в теплых экваториальных водах опустить ведро на достаточно большую глубину, оно всегда наполняется холодной водой. Единственным объяснением такого присутствия холодной воды в постоянно жарком климате было то, что она перетекала сюда из более холодных широт – с севера или юга. В 1798 г. Бенджамин Томпсон (также известный как граф Румфорд) опубликовал эссе под названием «О распространении тепла жидкостями», в котором указал, что, в отличие от пресной воды, которая начинает расширяться при охлаждении ниже 4 ℃ и продолжает делать это, пока не замерзнет, морская вода при охлаждении, наоборот, сжимается. При этом увеличивается ее плотность, продолжал Румфорд, поэтому холодная морская вода всегда опускается в глубины океана. Из этих физических свойств воды естественным образом проистекала идея замкнутой циркуляции. Румфорд утверждал, что в океане происходит непрерывная циркуляция воды, состоящая из направленного к экватору глубинного потока холодной воды и поверхностного потока теплой воды в обратном направлении [261] Margaret Deacon, Scientists and the Sea, 16501900: A Study of Marine Science (Aldershot: Ashgate, 1997), 209.
. Значение ветров, которые долгое время считались главной силой, перемещающей воду в океанах, померкло по сравнению с этим мощным круговоротом воды, приводимым в движение температурой и плотностью.
Интервал:
Закладка: