Максим Филипповский - Генезис. Небо и Земля. Том 1. История
- Название:Генезис. Небо и Земля. Том 1. История
- Автор:
- Жанр:
- Издательство:неизвестно
- Год:неизвестен
- ISBN:9785005620590
- Рейтинг:
- Избранное:Добавить в избранное
-
Отзывы:
-
Ваша оценка:
Максим Филипповский - Генезис. Небо и Земля. Том 1. История краткое содержание
Генезис. Небо и Земля. Том 1. История - читать онлайн бесплатно ознакомительный отрывок
Интервал:
Закладка:
144
Открытие Гесса предварило многие новые открытия в области физики элементарных частиц и ядерной физики. В частности, позитрон и мюон были впервые обнаружены в космических лучах Карлом Дэвидом Андерсоном. Гесс и Андерсон разделили Нобелевскую премию по физике 1936 года.
145
Эффект используется в кольцевых лазерных гироскопах для определения угловой скорости в системах инерциальной навигации.
146
Ковариантный – матем. о системах переменных: одинаково преобразующийся при линейном однородном преобразовании. Ковариант – математическая функция коэффициентов и переменных которая, при линейном преобразовании, обращается в такую же функцию коэффициентов и переменных преобразованной формы и приобретает лишь множитель некоторой степени модуля преобразования
147
Во время полного солнечного затмения 29 мая 1919 года английские астрономы измерили отклонение света звезд, проходящего вблизи поверхности Солнца: смещение изображений звезд составило 1,75І в полном согласии с предсказанием Эйнштейна.
148
Впервые сообщено о прямом наблюдении взаимодействующих массивных тел в сверхсильных гравитационных полях со сверхвысокими относительными скоростями (v / c> 0,5), что позволило проверить корректность ОТО с точностью до нескольких постньютоновских членов высоких порядков. Измеренная дисперсия гравитационных волн не противоречит сделанным ранее измерениям дисперсии и верхней границы массы гипотетического гравитона (<1,2 × 10 —22 эВ), если он в некотором гипотетическом расширении ОТО будет существовать
149
Существование чёрных дыр следует из точных решений уравнений Эйнштейна, первое из которых было получено Карлом Шварцшильдом. Сам термин «черная дыра» придуман Джоном Арчибальдом Уилером в конце 1967 года и впервые употреблён в публичной лекции «Наша Вселенная: известное и неизвестное» (Our Universe: the Known and Unknown) 29 декабря 1967 года. Ранее подобные астрофизические объекты называли «сколлапсировавшие звёзды» или «коллапсары» (от англ. collapsed stars), а также «застывшие звёзды» (англ. frozen stars).
150
Радиус Шварцшильда для Солнца составляет приблизительно 3,0 км, тогда как радиус Земли-всего около 9 мм, а радиус Луны-около 0,1 мм. Масса наблюдаемой Вселенной имеет радиус Шварцшильда приблизительно 13,7 миллиарда световых лет. Любой объект, радиус которого меньше радиуса Шварцшильда, называется черной дырой. Поверхность в радиусе Шварцшильда действует как горизонт событий в невращающемся теле (вращающаяся черная дыра работает несколько иначе). Ни свет, ни частицы не могут выйти через эту поверхность из области внутри, отсюда и название «черная дыра». Черная дыра – это сферическая область в пространстве, которое окружает сингулярность в ее центре; это не сама сингулярность. Черные дыры можно классифицировать по радиусу Шварцшильда или, что эквивалентно, по плотности. Поскольку радиус линейно связан с массой, в то время как заключенный объем соответствует третьей степени радиуса, малые черные дыры, следовательно, гораздо плотнее больших. Объем, заключенный в горизонт событий наиболее массивных черных дыр, имеет среднюю плотность ниже, чем звезды главной последовательности. Сверхмассивная черная дыра (SMBH) является самым крупным типом черной дыры, хотя есть несколько официальных критериев того, как такой объект считается так, порядка сотен тысяч до миллиардов солнечных масс. (Обнаружены сверхмассивные черные дыры размером до 21 миллиарда (2,1 × 10 10) м☉, такие как NGC 4889). В отличие от черных дыр со звездной массой, сверхмассивные черные дыры имеют сравнительно низкую среднюю плотность. С учетом этого средняя плотность сверхмассивной черной дыры может быть меньше плотности воды. Радиус Шварцшильда тела пропорционален его массе и, следовательно, его объему, предполагая, что тело имеет постоянную плотность массы. Напротив, физический радиус тела пропорционален кубическому корню его объема. Поэтому, поскольку тело накапливает вещество при заданной фиксированной плотности, его радиус Шварцшильда будет увеличиваться быстрее, чем его физический радиус. Когда тело с такой плотностью вырастет до 136 миллионов солнечных масс (1,36 × 10 8 м☉), его физический радиус будет захвачен радиусом Шварцшильда, и, таким образом, оно образует сверхмассивную черную дыру. Считается, что сверхмассивные черные дыры, подобные этим, не образуются сразу после сингулярного коллапса скопления звезд. Вместо этого они могут начать жизнь как меньшие черные дыры размером со звезду и увеличиваться за счет аккреции материи или даже других черных дыр. Небольшая масса имеет чрезвычайно малый радиус Шварцшильда. Масса, подобная горе Эверест, имеет радиус Шварцшильда гораздо меньше нанометра. Его средняя плотность при таком размере была бы настолько высока, что ни один известный механизм не мог бы сформировать такие чрезвычайно компактные объекты. Такие черные дыры могли образоваться на ранней стадии эволюции Вселенной, сразу после Большого Взрыва, когда плотность была чрезвычайно высока. Поэтому эти гипотетические миниатюрные черные дыры называются первичными черными дырами.
151
Многообразия постоянной кривизны наиболее известны в случае двух измерений, где поверхность сферы является поверхностью постоянной положительной кривизны, плоская (Евклидова) плоскость -поверхностью постоянной нулевой кривизны, а гиперболическая плоскость – поверхностью постоянной отрицательной кривизны. Общая теория относительности Эйнштейна ставит пространство и время в равное положение, так что вместо раздельного рассмотрения пространства и времени рассматривается геометрия единого пространства-времени. Случаями пространства-времени постоянной кривизны являются пространство де Ситтера (положительное), пространство Минковского (нулевое) и анти-пространство де Ситтера (отрицательное). Как таковые, они являются точными решениями уравнений поля Эйнштейна для пустой Вселенной с положительной, нулевой или отрицательной космологической постоянной соответственно. Пространство анти-де Ситтера (AdS) обобщается на любое число пространственных измерений. В более высоких измерениях он наиболее известен своей ролью в соответствии AdS/CFT, которое предполагает, что можно описать силу в квантовой механике (например, электромагнетизм, слабое взаимодействие или сильное взаимодействие) в определенном числе измерений (например, четыре) с помощью теории струн, где струны существуют в пространстве анти-де Ситтера, с одним дополнительным (некомпактным) измерением.
152
Диверге́нция (от лат. divergere – обнаруживать расхождение) – дифференциальный оператор, отображающий векторное поле на скалярное (то есть, в результате применения к векторному полю операции дифференцирования получается скалярное поле), который определяет (для каждой точки), «насколько расходится входящее и исходящее из малой окрестности данной точки поле», точнее, насколько расходятся входящий и исходящий потоки.
Читать дальшеИнтервал:
Закладка: