Евгений Стырин - Прикладные проблемы внедрения этики искусственного интеллекта в России. Отраслевой анализ и судебная система
- Название:Прикладные проблемы внедрения этики искусственного интеллекта в России. Отраслевой анализ и судебная система
- Автор:
- Жанр:
- Издательство:неизвестно
- Год:неизвестен
- ISBN:978-5-7598-2242-4
- Рейтинг:
- Избранное:Добавить в избранное
-
Отзывы:
-
Ваша оценка:
Евгений Стырин - Прикладные проблемы внедрения этики искусственного интеллекта в России. Отраслевой анализ и судебная система краткое содержание
В формате PDF A4 сохранен издательский макет книги.
Прикладные проблемы внедрения этики искусственного интеллекта в России. Отраслевой анализ и судебная система - читать онлайн бесплатно ознакомительный отрывок
Интервал:
Закладка:
Искусственный интеллект помогает обеспечивать безопасность граждан, например, сопоставляя лица граждан, попавших в камеры наблюдения, с лицами разыскиваемых нарушителей закона, тем самым идентифицируя их положение и перемещение в случае совпадения. Таким образом, органы внутренних дел получают мощный инструмент для отслеживания разыскиваемых лиц, совершивших правонарушения, выявления лиц, которые отличаются подозрительным или противоправным поведением [Faggella, 2019]. Аналогичные инструменты компьютерного зрения применяются на дорогах для выявления нарушителей правил дорожного движения. Большой потенциал для функционала компьютерного зрения наблюдается в системах «Умный дом» – это совокупность камер, датчиков и иных управляющих элементов, которые круглосуточно накапливают и предоставляют уполномоченному наблюдателю видеоданные о состоянии квартир, домов, придомовых территорий. Таким образом, для построения «умных городов», согласно соответствующей концепции Минстроя России (https://russiasmartcity.ru/), система интеллектуального видеонаблюдения является ее неотъемлемым элементом.
Отдельное направление не только в бизнесе, но и в государстве – замена рутинного труда человека на программу, функционирующую на основе технологий машинного обучения для выполнения рутинных операций. Примером такой программы является чат-бот, который может отвечать на достаточно простые вопросы граждан, связанные с государственными информационными ресурсами и заданные ему в режиме реального времени в текстовом виде, например, через официальные информационные ресурсы органов власти или судов. Вопросы могут затрагивать целый ряд тем: разъяснение отдельных положений законодательства, диагностику статусов граждан для получения социальной поддержки, консультации по получению государственных услуг. С помощью чат-ботов можно реализовать простые инструменты диагностики по различным направлениям. В основу положен механизм диалога между пользователем и чат-ботом, в котором посредством задания вопросов пользователем в виде текста или голосом может быть выявлена или решена некоторая проблема. Например, с помощью простых вопросов чат-бот может диагностировать наличие некоторого заболевания (в частности, COVID-19), определить, есть ли формальные предпосылки у кандидата пройти по конкурсу на некоторую должность на государственной службе, есть ли право у заявителя получить социальную льготу или субсидию, к примеру, в сельском хозяйстве.
Таким образом, программы на основе машинного обучения позволяют заменить труд человека при решении рутинных задач или хотя бы при их выполнении снизить нагрузку на государственных служащих, переключив усилия сотрудников на более сложные и неоднозначные проблемы.
Вообще говоря, помимо анализа и сопоставления данных, программы на основе искусственного интеллекта могут не только выдавать рекомендации, но и принимать решения в автоматическом режиме. Вопрос состоит в готовности ответственных управленцев контролировать каждое решение либо полагаться на решение, предложенное программой. Ярким примером может служить система государственного контроля и надзора, в которой применяется риск-ориентированный подход [Кнутов, Плаксин, 2019]. Данные о проверках объектов, требующих надзора (заводы, предприятия, учреждения сферы образования, здравоохранения, сфера общественного питания), могут быть автоматически проанализированы и сопоставлены с нормативами, определяющими риски непроведения своевременных проверок. Таким образом, программа в состоянии присваивать риски поднадзорным объектам, автоматически устанавливая классы этих рисков, определяя в дальнейшем частоту проверок. При подобном подходе подразумевается только контроль со стороны человека, а выработка решения может оставаться за программой.
Аналогичным образом программа на основе технологий искусственного интеллекта может взять на себя функционал оценки регулирующего воздействия (ОРВ), которая проводится для целей государственного регулирования, определения возможных вариантов достижения целей, а также оценки связанных с ними позитивных и негативных эффектов [Клименко, Минченко, 2016]. При обеспечении сбора подробных цифровых данных об отрасли, подвергающейся регулированию, ИИ может просчитывать текущие и прогнозные ключевые экономические показатели государственной политики в отдельно взятой отрасли. При совершенствовании выбора решений на основе машинного обучения полученные прогнозы могут быть точнее, чем достаточно субъективные подходы, которые предлагаются отраслевыми экспертами. Тем не менее с учетом вероятностного расчета значений показателей с помощью ИИ полученные результаты также требуют контроля со стороны отраслевых экспертов и ответственных государственных служащих. Проведение ОРВ с привлечением функционала искусственного интеллекта существенно убыстряет процесс выработки и оценки альтернатив, которые возможны для совершенствования нормативно-правовой базы и основных показателей государственной политики в некоторой отрасли, а значит ИИ остается перспективной технологией для проведения ОРВ.
Осуществление государственной бюджетной и налоговой политики для стимулирования бизнеса также можно свести к задаче определения налогового режима и объема поддержки для различных компаний в зависимости от их финансово-экономических показателей, сравнимых с установленными эталонными. Обученные нейронные сети могут не только классифицировать компании по критериям для определения налогового режима и бюджетной поддержки, но позволяют уточнить эти критерии на основе проанализированного множества собираемых показателей о деятельности компаний.
Абсолютно аналогично решаются задачи осуществления лицензионной и разрешительной деятельности органов власти, которые сравнимы с задачей кредитного скоринга клиента в банке. Организация, деятельность которой подлежит лицензированию или требует получения разрешений, может быть в автоматическом режиме оценена нейросетью на основе ранее изученных аналогичных данных. В таком случае организация может быть автоматически классифицирована под положительное либо отрицательное решение о выдаче лицензии или разрешения. Окончательное решение может быть принято сотрудником-специалистом, однако подавляющая часть предварительных расчетов для определения параметров выдачи лицензии или разрешения может быть проведена программой на основе технологий ИИ.
Приведенный выше обзор возможностей ИИ, призванных помочь в решении разных классов задач в государственном управлении и в судебной системе, показывает неизбежность внедрения инновационных решений на основе машинного обучения в ближайшем будущем. Искусственный интеллект дает возможность сократить издержки при осуществлении государственных функций, увеличить скорость отклика на запросы граждан, повысить качество результатов взаимодействия органов власти с внешними акторами, а также перераспределить нагрузку на государственных служащих, избавив их от решения рутинных задач. При этом изложенные выше возможности ИИ демонстрируют позитивный эффект от его внедрения в деятельность органов власти. Однако деятельность органов государственной власти сопряжена с пристальным вниманием общественности, требованиями соблюдать прозрачность и подотчетность в принятии решений и представлении результатов. Если опорой деятельности для органов власти становится ИИ, то государству следует обеспечить важнейший аспект внедрения ИИ в операционную и стратегическую деятельность – этический.
Читать дальшеИнтервал:
Закладка: