Владимир Трошин - Со спичками не шутят

Тут можно читать онлайн Владимир Трошин - Со спичками не шутят - бесплатно ознакомительный отрывок. Жанр: Прочая научная литература, год 2020. Здесь Вы можете читать ознакомительный отрывок из книги онлайн без регистрации и SMS на сайте лучшей интернет библиотеки ЛибКинг или прочесть краткое содержание (суть), предисловие и аннотацию. Так же сможете купить и скачать торрент в электронном формате fb2, найти и слушать аудиокнигу на русском языке или узнать сколько частей в серии и всего страниц в публикации. Читателям доступно смотреть обложку, картинки, описание и отзывы (комментарии) о произведении.

Владимир Трошин - Со спичками не шутят краткое содержание

Со спичками не шутят - описание и краткое содержание, автор Владимир Трошин, читайте бесплатно онлайн на сайте электронной библиотеки LibKing.Ru
Несмотря на огромные перемены в образе жизни, произошедшие в последние годы, из нее не пропали спички. Смартфоны вытесняют фотоаппараты, видеокамеры, калькуляторы и компьютеры, а зажигалки не смогли вытеснить окончательно простые спички. Поэтому сохраняются головоломки, игры, фокусы со спичками. Эта книга – гимн спичкам в прозе. Собрание занимательных, познавательных, развивающих материалов, распределенных как в школе, по отдельным учебным предметам. Добро пожаловать в школу самообразования. Надеюсь, это не будет очень скучно.

Со спичками не шутят - читать онлайн бесплатно ознакомительный отрывок

Со спичками не шутят - читать книгу онлайн бесплатно (ознакомительный отрывок), автор Владимир Трошин
Тёмная тема
Сбросить

Интервал:

Закладка:

Сделать

2-111.Из 20 спичек составлены два прямоугольника: один из 14 спичек, а другой – из 6. Ясно, что площадь второго прямоугольника в 3 раза меньше площади первого. Сломайте данные фигуры и составьте новые, снова из 14 и из 6 спичек, причём с тем же отношением площадей.

2112Площадь прямоугольника из 14 спичек в 3 раза больше площади - фото 135

2-112.Площадь прямоугольника из 14 спичек в 3 раза больше площади прямоугольника, составленного из 6 спичек. Теперь возьмите 1 спичку в б ольшей группе, переложите её в м еньшую и с помощью 7 и 13 спичек ограничьте снова две фигуры, из которых площадь одной была бы ровно в 3 раза больше площади другой.

2-113.

Соотношение площадей фигур 1:3. Теперь возьмите 1 спичку в б ольшей группе, переложите её в м еньшую, и постройте новые фигуры с тем же соотношением площадей. Только сделайте это так, чтобы 12 спичек из первоначального расположения остались на своих местах.

2114Примем за среднюю длину спички 5 сантиметров Сколько потребуется спичек - фото 136

2-114.Примем за среднюю длину спички 5 сантиметров. Сколько потребуется спичек, чтобы выложить равными квадратами со стороной в одну спичку один квадратный метр?

Раздел Г.Деление фигуры на заданные части и разное.

2-115.Данную фигуру разделите на 4 одинаковые части с помощью 5 спичек.

2116Фигуру составленную из 16 спичек разделите спичками на две одинаковые - фото 137

2-116.Фигуру, составленную из 16 спичек, разделите спичками на две одинаковые части.

2117С помощью 7 спичек разделите фигуру на 3 одинаковые части - фото 138

2-117.С помощью 7 спичек, разделите фигуру на 3 одинаковые части.

2118Данную фигуру рис ниже слева разделите на 4 одинаковые части с помощью - фото 139

2-118.Данную фигуру (рис. ниже слева) разделите на 4 одинаковые части с помощью 8 спичек.

2119Квадрат ограничивают 16 спичек рис выше справа Требуется разделить - фото 140

2-119.Квадрат ограничивают 16 спичек (рис. выше справа). Требуется разделить его на 4 фигуры площадью по 4 у. кв. ед. каждая с помощью 8, 10, 12 спичек (три задания). Разумеется, нельзя класть две спички на одну и ту же сторону. Труднее выполнить условие, используя 11 спичек (четвертое задание).

2-120.Выложенные в форме квадрата 16 спичек представляют изгородь двора. Часть площади двора занята домом, изображенным в виде квадрата из 4 спичек. Остальную часть двора требуется разделить при помощи 10 спичек на 5 участков, одинаковых по форме и по площади.

2121Данную фигуру разделите на 4 одинаковые части с помощью 8 спичек - фото 141

2-121.Данную фигуру разделите на 4 одинаковые части с помощью 8 спичек.

2122Сад очертание которого изображено 20 спичками и в середине которого - фото 142

2-122.Сад, очертание которого изображено 20 спичками, и в середине которого находится дом квадратной формы, требуется:

а) разделить 18-ю спичками на 6 равновеликих и одинаковых по форме частей;

б) разделить 20-ю спичками на 8 одинаковых частей.

Раздел ДРазличные дополнения к геометрии не вошедшие в предыдущие разделы по - фото 143

Раздел Д.Различные дополнения к геометрии, не вошедшие в предыдущие разделы по разным причинам.

Две задачи отличаются тем, что для их формулировки и решения, кроме спичек, нужен соответствующий рисунок на бумаге.

2-123.Сторона каждого маленького квадрата на рисунке, имеет длину в одну спичку. Требуется разместить ровно 26 спичек вдоль линий таким образом, чтобы они разделили весь чертёж на две части одинаковых размеров и формы, причем в одной из них должны находиться два нарисованных треугольника, а в другой – два круга.

2124На бумаге начерчен квадрат со стороной равной длине 4 спичек и прямыми - фото 144

2-124.На бумаге начерчен квадрат со стороной равной длине 4 спичек и прямыми линиями разделён на 16 меньших квадратов.

Задача состоит в том чтобы расположить спички на листе выполняя три условия - фото 145

Задача состоит в том, чтобы расположить спички на листе выполняя три условия:

1) каждая спичка должна закрывать сторону одного из маленьких квадратов;

2) у каждого из маленьких квадратов ровно 2 стороны должны быть закрыты спичками;

3) спички нельзя размещать, на краю большого квадрата, то есть по внешним сторонам.

Решите ту же задачу для исходного квадрата с длиной стороны в 5 спичек.

Отдохнем от решения заданий. На уроках школьной геометрии, прежде чем решать задачи, учитель объясняет соответствующие теоремы и доказывает их. Оказывается и теоремы можно доказывать «на спичках». Очень важной для всего курса геометрии является теорема о сумме внутренних углов треугольника. Вот как можно доказать ее с помощью простой спички. Начертив на доске треугольник, положим на одну из его сторон (например, в вершине А ) спичку, направленную головкой от точки А в сторону точки В .

Далее следуя рисунку будем двигать спичку вдоль стороны до тех пор пока ее - фото 146

Далее, следуя рисунку, будем двигать спичку вдоль стороны, до тех пор, пока ее головка не совпадет с вершиной В . Теперь, поворачиваем спичку так, чтобы она описала угол В и расположилась вдоль другой стороны треугольника. Сдвинем теперь спичку вдоль второй стороны до следующей вершины С и поворачиваем спичку так, чтобы она описала угол С . Далее сдвинем спичку вдоль третьей стороны до исходной вершины А , поворачиваем спичку так, чтобы она описала угол А и вернулась в исходное положение, повернувшись при этом на все три угла треугольника, причем строго по часовой стрелке. В итоге она окажется совмещенной с первоначальной стороной треугольника, но ее головка «смотрит» в противоположное направление. Угол, описанный спичкой, равен сумме внутренних углов треугольника, а с другой стороны её суммарный поворот равен развернутому углу, то есть 180 0. Этот метод доказательства называется «метод скользящей спички». Им можно воспользоваться для определения суммы внутренних углов четырехугольника, он служит удобным способом измерения углов любых многоугольников с любыми сложными самопересечениями.

Серьезные рассуждения подготовили нас к серьезным задачам. Спичечный коробок по форме представляет собой прямоугольный параллелепипед.

Читать дальше
Тёмная тема
Сбросить

Интервал:

Закладка:

Сделать


Владимир Трошин читать все книги автора по порядку

Владимир Трошин - все книги автора в одном месте читать по порядку полные версии на сайте онлайн библиотеки LibKing.




Со спичками не шутят отзывы


Отзывы читателей о книге Со спичками не шутят, автор: Владимир Трошин. Читайте комментарии и мнения людей о произведении.


Понравилась книга? Поделитесь впечатлениями - оставьте Ваш отзыв или расскажите друзьям

Напишите свой комментарий
x