Николай Павлов - Методы маркетинговых исследований

Тут можно читать онлайн Николай Павлов - Методы маркетинговых исследований - бесплатно ознакомительный отрывок. Жанр: Прочая научная литература, год 2019. Здесь Вы можете читать ознакомительный отрывок из книги онлайн без регистрации и SMS на сайте лучшей интернет библиотеки ЛибКинг или прочесть краткое содержание (суть), предисловие и аннотацию. Так же сможете купить и скачать торрент в электронном формате fb2, найти и слушать аудиокнигу на русском языке или узнать сколько частей в серии и всего страниц в публикации. Читателям доступно смотреть обложку, картинки, описание и отзывы (комментарии) о произведении.

Николай Павлов - Методы маркетинговых исследований краткое содержание

Методы маркетинговых исследований - описание и краткое содержание, автор Николай Павлов, читайте бесплатно онлайн на сайте электронной библиотеки LibKing.Ru
Это – опыт практической работы и преподавания курса "Маркетинговые исследования". Маркетинговые исследования невозможны без специальных знаний и математического аппарата.Использован подход Гилберта Черчилля и Нэреша Малхотры: главный акцент делается на подробном, пошаговом описании использования широкого спектра методов. Описываются как общестатистические, так и специальные методы маркетинговых исследований, обсуждаются получаемые результаты и возможные ошибки.Книга будет полезна студентам и преподавателям маркетинга и менеджмента, маркетологам-практикам.

Методы маркетинговых исследований - читать онлайн бесплатно ознакомительный отрывок

Методы маркетинговых исследований - читать книгу онлайн бесплатно (ознакомительный отрывок), автор Николай Павлов
Тёмная тема
Сбросить

Интервал:

Закладка:

Сделать

Особенности MIS:

– формат входной информации и способ хранения четко определены;

– данные в базах данных постоянно обновляются;

– задачи по обработке данных запрограммированы и не требуют от пользователя квалификации программиста;

– данные представляются в заранее заданном виде всем, кому они нужны;

– параметры отчетов фиксированы.

Наиболее существенна последняя особенность. В любой момент можно, нажав одну-две кнопки, получить новейшие сведения, которые будут представлены в привычном виде [4] Это может быть, например, ежедневно распечатываемый список товаров, выпускаемых некоторой фирмой и ее конкурентами, и цены на них. .

Недостатками традиционных MIS является то, что их разработка дорога и сложна. Она выполняется высококвалифицированными программистами. В то же время требования к информации для принятия решений постоянно меняются. Менеджеры (особенно высшего звена) часто заранее не знают, какая именно информация им потребуется, а быстрый доступ к свежей информации при принятии решений в нестандартных, критических ситуациях имеет решающее значение.

Многие проблемы принятия управленческих решений относятся к плохо структурированным, они связаны с персональным выбором и ответственностью за него. Принятие управленческого решения, особенно стратегического – творческий процесс. Система стандартизированных форм представления данных недостаточно гибка для решения таких задач.

Поэтому в настоящее время МИС представляют собой конгломерат различных программных средств, выполняющих различные функции: скрепинг данных сайтов, их очистку и консолидацию, аналитическую обработку и визуализацию результатов. Теперь можно более гибко управлять всеми этапами этой деятельности.

2. Информационно-поисковые системыявляются разновидностью MIS и служат для быстрого поиска информации, содержащейся в основном в текстовых документах. Для этого в них применяются специальные средства. Примерами таких систем являются Google и Yandex. К этому же типу можно отнести и информационно-правовые системы, например, Консультант плюс, содержащие постоянно обновляемую базу законов, указов и нормативных документов.

3. В XXI веке объем производимых и хранимых данных возрастает невиданными темпами. Поэтому появилась новая область знаний – Большие данные(Big Data). Это, согласно [https://ru.wikipedia.org/wiki/Большие_данные] – "совокупность подходов, инструментов и методов обработки структурированных и неструктурированных данных огромных объёмов и значительного многообразия для получения воспринимаемых человеком результатов, эффективных в условиях непрерывного прироста, распределения по многочисленным узлам вычислительной сети". Их характеристики:

– большой физический объем;

– большая скорость прироста и необходимость быстрого получения результата;

– разнообразие типов структурированных и полуструктурированных данных.

Методы и средства работы с Большими данными бурно развиваются в настоящее время [5] Фрэнкс Б. Революция в аналитике. Как в эпоху Big Data улучшить ваш бизнес с помощью операционной аналитики. – М.: Альпина Паблишер. – 2018. – 320 с. Грас Д. Data Science. Наука о данных с нуля. – СПб.: БХВ-Петербург. – 2019. – 336 с. .

Особенности больших данных породили целую науку Data science (науку о данных). Это наука о методах анализа данных и извлечения из них полезной информации Она объединяет математические методы, программирование, методы работы с большими данными, методы машинного обучения. Data scientist (ученый по данным) должен владеть:

– математикой и статистикой;

– информационными технологиями, включая программирование;

– пониманием бизнес-процессов, для которых он собирает информацию.

4. Системы поддержки принятия решений(DSS – decision support systems). DSS, которые все чаще используются в настоящее время, – это скоординированный набор данных, систем, инструментов и технологий, программного и аппаратного обеспечения, с помощью которого в организации под управлением пользователя [6] При разработке идеи DSS предполагалось, что пользователями станут руководители. Однако на практике появилась новая должность – аналитик. собирается и обрабатывается информация о бизнесе и окружающей среде с целью обоснования маркетинговых действий.

DSS состоит из трех основных частей.

– Система данных для сбора и хранения информации о маркетинге, финансах и производстве, получаемой из внутренних и внешних источников. Обычно это база или банк данных, как и в MIS.

– Система диалога, позволяющая пользователю задавать, какие данные следует выбирать и как их обрабатывать.

– Система моделей – идей, алгоритмов и процедур – которые позволяют обрабатывать данные и проводить их анализ. В обработке данных используются различные процедуры, от простого суммирования до статистического анализа и нелинейной оптимизации. Типовыми процедурами являются:

– объединение в группы;

– получение сводных показателей;

– ранжирование;

– выделение особых случаев;

– графическое представление данных.

Несмотря на кажущуюся простоту, важность процедур последнего типа трудно переоценить. Иногда достаточно только взглянуть на графическое представление данных, чтобы понять, даст ли хороший результат кластерный анализ, какой вид регрессионной функции выбрать и т.д.

Модели принятия решений служат для обработки данных, нужных для решения, и по способам представления результатов своей работы подразделяются на информационные (что есть и что будет, если…), советующие (в меру своего "разумения") и (редко) управляющие. Типы таких моделей представлены в таблице 1.

Таблица 1 – Модели принятия решений

В настоящее время идеи DSS получили свое дальнейшее развитие Прогресс в - фото 1

В настоящее время идеи DSS получили свое дальнейшее развитие. Прогресс в области вычислительной техники сделал возможным новые подходы к анализу данных.

5. Онлайновая аналитическая обработка данных(OLAP – Online Analytical Processing) – один из новых инструментов. Данные обычно берутся из уже существующих баз данных и подвергаются быстрому, но достаточно поверхностному предварительному разведочному анализу [7] Коробко А.В., Пенькова Т.Г. Интегральная OLAP-модель предметной области для аналитической поддержки принятия решений. // Информационные технологии. – 2014. – № 12, с. 8 – 13. . В OLAP обычно используется многомерная модель данных. Это позволяет гибко манипулировать информацией, но требует довольно серьезной специальной подготовки.

6. Для обработки данных, в том числе и находящихся в хранилищах, предложена концепция интеллектуального анализа данных(Data Mining – "добыча данных"). Это, согласно [8] Вейнберг Н.Н. Интеллектуальный анализ данных и систем управления бизнес- правилами в телекоммуникациях. – М.: НИЦ ИНФРА-М, 2016. – 173 с. , "процесс обнаружения в сырых данных ранее неизвестных; нетривиальных; практически полезных; доступных интерпретации знаний … для принятия решений". Новизна подхода заключается в том, что современные мощные компьютеры в состоянии переработать огромные массивы данных и найти в них что-то полезное. Однако не следует считать, что компьютер полностью заменяет исследователя-человека. Наоборот, применение методов Data Mining – процесс, требующий от исследователя глубоких знаний. Система Data Mining требует четко согласованной работы всех своих компонентов. Пользователь должен быть квалифицированным специалистом в таких областях, как работа с базами данных, анализ данных традиционными математическими методами и средствами искусственного интеллекта. Наконец, интерпретация полученных данных и использование полученных результатов также остаются прерогативой человека.

Читать дальше
Тёмная тема
Сбросить

Интервал:

Закладка:

Сделать


Николай Павлов читать все книги автора по порядку

Николай Павлов - все книги автора в одном месте читать по порядку полные версии на сайте онлайн библиотеки LibKing.




Методы маркетинговых исследований отзывы


Отзывы читателей о книге Методы маркетинговых исследований, автор: Николай Павлов. Читайте комментарии и мнения людей о произведении.


Понравилась книга? Поделитесь впечатлениями - оставьте Ваш отзыв или расскажите друзьям

Напишите свой комментарий
x