Александр Потупа - Открытие Вселенной - прошлое, настоящее, будущее

Тут можно читать онлайн Александр Потупа - Открытие Вселенной - прошлое, настоящее, будущее - бесплатно полную версию книги (целиком) без сокращений. Жанр: Прочая научная литература, издательство Юнацтва, год 1991. Здесь Вы можете читать полную версию (весь текст) онлайн без регистрации и SMS на сайте лучшей интернет библиотеки ЛибКинг или прочесть краткое содержание (суть), предисловие и аннотацию. Так же сможете купить и скачать торрент в электронном формате fb2, найти и слушать аудиокнигу на русском языке или узнать сколько частей в серии и всего страниц в публикации. Читателям доступно смотреть обложку, картинки, описание и отзывы (комментарии) о произведении.

Александр Потупа - Открытие Вселенной - прошлое, настоящее, будущее краткое содержание

Открытие Вселенной - прошлое, настоящее, будущее - описание и краткое содержание, автор Александр Потупа, читайте бесплатно онлайн на сайте электронной библиотеки LibKing.Ru

На основе обширных данных из астрономии, астрологии, географии, физики, математики, химии, биологии, истории, археологии и других наук автор рассказывает о строении Вселенной, истории человечества, о планетах Солнечной системы и Галактике, о звездах и их эволюции, о возможностях существования внеземных цивилизаций, о перспективах космических исследований, об идее контакта с инопланетянами.

Открытие Вселенной - прошлое, настоящее, будущее - читать онлайн бесплатно полную версию (весь текст целиком)

Открытие Вселенной - прошлое, настоящее, будущее - читать книгу онлайн бесплатно, автор Александр Потупа
Тёмная тема
Сбросить

Интервал:

Закладка:

Сделать

Все сдвинулось с места, когда исследователи научились уверенно выделять какие-то особые типы звезд, и по этим особенностям, как по ступенькам, карабкаться к пониманию основных звездных характеристик расстояний, размеров, масс, светимостей, цвета, возраста, строения.

Исходный прорыв наметился как раз в связи с древней проблемой расстояний. Если в античные времена (и вплоть до Коперника) считалось более или менее очевидным, что звезды всех 6 величин находятся на одинаковом расстоянии от Земли, то последовавший разгром хрустальной сферы привел к противоположному крену — долгое время общественное мнение склонялось к тому, что истинная яркость звезд того же порядка, что и у Солнца, а наблюдаемая яркость целиком зависит от их удаленности. Эта вполне научная гипотеза приводила, в конечном счете, ко многим ошибочным выводам — ведь светимость большинства ярких звезд на самом деле значительно превышает светимость Солнца. Поэтому лишь решение проблемы расстояний открывало дорогу к физической классификации звезд.

Необходимы были прямые и очень точные измерения звездных параллаксов. Они стали активно проводиться уже на рубеже 18–19 веков, но долгое время из-за больших ошибок параллаксы сильно завышались, и расстояния до звезд оказывались неправдоподобно малыми.

Достаточно точные результаты появились почти одновременно и совершенно независимо при изучении трех ярких звезд.

Первый результат, по-видимому, получил директор Дерптской обсерватории Василий Яковлевич Струве [79] В. Я. Струве, впоследствии организатор и с 1840 г. директор Пулковской обсерватории, академик Петербургской АН, стал родоначальником блестящей «звездной династии». Его сын Отто Васильевич (1819–1905), сменивший отца на посту в Пулково в 1862 г., и внук Людвиг Оттович (1858–1920), директор Харьковской обсерватории, внесли огромный вклад в изучение двойных звезд и во многие другие области астрономии. Правнук Отто Людвигович (1897–1963) стал одним из создателей современной радиоастрономии. Он возглавлял знаменитую американскую обсерваторию Грин-Бэнк, был президентом Международного астрономического союза. Именно Отто Струве сформулировал концепцию звездной эволюции. (1793–1864), определивший параллакс Веги (α Лиры) в 1837 году. Это была прецизионная работа — параллакс оказался немногим больше десятой доли угловой секунды (современное значение 0,123).

Заметно большие параллаксы были получены в 1838 году немецким астрономом Фридрихом Вильгельмом Бесселем (1784–1846) для 61 Лебедя и английским астрономом Томасом Гендерсоном (1798–1844), наблюдавшим в Южной Африке? Центавра [80] Современные значения параллаксов 61 Лебедя 0,292, α Центавра 0,751. .

Вега и α Центавра — четвертая и пятая среди самых ярких звезд, а 61 Лебедя — очень быстрая звезда, чье собственное движение можно зарегистрировать невооруженным глазом (5,22 в год) [81] Самая быстрая из известных сейчас звезд — звезда Барнарда, обнаруженная в 1916 году американским астрономом Эдвардом Эмерсоном Барнардом (1857–1923), известным исследователем планет и слабых звезд. Она обладает собственным движением 10,3 в год, а ее светимость в 70 раз ниже солнечной. . Это и давало предварительные основания числить данные звезды среди ближайших к Солнцу.

Бессель первым сообщил о своем открытии, но, как и Гендерсон, опубликовал его в 1839 году, а Струве — даже в 1840 г.

Из этих измерений впервые возникла надежная абсолютная шкала межзвездных расстояний. Оказалось, что ближайшая из звезд находится на расстоянии, которое свет преодолевает за 4,28 года (это так называемая Проксима Центавра с параллаксом 0,762, относящаяся к тройной системе Центавра).

Зная расстояния, можно было вводить абсолютные звездные величины, определяемые как блеск звезды, отнесенной от наблюдателя ровно на 10 парсеков:

М = m + 5–5 lg R, где расстояние R дано в парсеках.

Из сопоставления разных звезд вытекало, что Солнце ничем особым не выделяется даже среди ближайших соседей. Его светимость в 3 раза больше, чем у? Центавра, но, например, светимость Сириуса в 22 раза превосходит солнечную.

К сожалению, метод тригонометрических параллаксов работает до расстояний порядка 30 парсеков, поскольку надежные измерения параллакса отдельной звезды можно вести с точностью, не превышающей 0,03. Далее необходимо учитывать параллаксы, относящиеся к звездным скоплениям, — это дает достаточно надежные результаты для расстояний в 10–20 раз больших.

Следующее расширение масштаба связано с переходом к расстояниям порядка размера Галактики (20–30 килопарсеков), а также к межгалактическим расстояниям в миллионы и десятки миллионов парсеков и космологическим миллиарды парсеков. И здесь потребовались новые приемы измерения.

Необходимость смены методов при переходе к иным масштабам не должна вызывать удивление. Нельзя, пользуясь одной и той же метровой линейкой, одинаково хорошо измерять объем комнаты, молекулы и галактики. Каждая область требует своего подхода — важна лишь стыковка с исходным метром. Поэтому естественно, что метод тригонометрических параллаксов, хорошо приспособленный для определения размеров в ограниченной околоземной окрестности — от Луны до не слишком далеких звезд, перестает работать там, где угловые измерения становятся ненадежны [82] Есть глубокий смысл в том, что идеи, в сущности, геодезической тригонометрии и геометрии, доставшиеся в наследство от тех времен, когда небо рассматривалось как особая подобласть ойкумены, определяли астрономические измерения до второй половины прошлого века. Зарождавшиеся тогда новые представления об измерениях, пространстве и времени, поле и веществе стали выдвигать на передний план свойства светового луча, а не твердого стержня. . Основную роль начинают играть иные стандарты — звезды с хорошо выраженной зависимостью между периодом пульсаций и светимостью (цефеиды) и, наконец, самые общие свойства источников излучения (допплер-эффект). На этих методах мы немного остановимся в следующих разделах — они оказались ключом к открытию крупнейших космических структур.

Что же касается звезд — здесь астрономы шаг за шагом изыскивали возможности определения важнейших параметров.

Не так уж хитро, хотя и крайне ограниченно, удавалось измерять массы. В этой задаче срабатывали те же методы, которые были найдены при исследовании планет Солнечной системы. Если для двойной звезды удавалось оценить орбиту каждой компоненты и период обращения, то дальше включались обычные математические методы небесной механики, и массы вычислялись из системы уравнений. Другое дело, что ситуация, когда известно расстояние до двойной звезды, и ее компоненты достаточно разнесены для четкого выделения орбитального движения, встречается весьма редко. В большинстве случаев приходится прибегать к косвенным методам, дающим очень приближенные оценки. К сожалению, до сих пор вообще не существует прямого метода определения массы одинокой звезды — здесь приходится давать чисто аналоговую оценку, сопоставляя объект со звездами того же цвета и спектрального класса.

Читать дальше
Тёмная тема
Сбросить

Интервал:

Закладка:

Сделать


Александр Потупа читать все книги автора по порядку

Александр Потупа - все книги автора в одном месте читать по порядку полные версии на сайте онлайн библиотеки LibKing.




Открытие Вселенной - прошлое, настоящее, будущее отзывы


Отзывы читателей о книге Открытие Вселенной - прошлое, настоящее, будущее, автор: Александр Потупа. Читайте комментарии и мнения людей о произведении.


Понравилась книга? Поделитесь впечатлениями - оставьте Ваш отзыв или расскажите друзьям

Напишите свой комментарий
x