Александр Потупа - Открытие Вселенной - прошлое, настоящее, будущее
- Название:Открытие Вселенной - прошлое, настоящее, будущее
- Автор:
- Жанр:
- Издательство:Юнацтва
- Год:1991
- Город:Минск
- ISBN:5-7880-0325-3
- Рейтинг:
- Избранное:Добавить в избранное
-
Отзывы:
-
Ваша оценка:
Александр Потупа - Открытие Вселенной - прошлое, настоящее, будущее краткое содержание
На основе обширных данных из астрономии, астрологии, географии, физики, математики, химии, биологии, истории, археологии и других наук автор рассказывает о строении Вселенной, истории человечества, о планетах Солнечной системы и Галактике, о звездах и их эволюции, о возможностях существования внеземных цивилизаций, о перспективах космических исследований, об идее контакта с инопланетянами.
Открытие Вселенной - прошлое, настоящее, будущее - читать онлайн бесплатно полную версию (весь текст целиком)
Интервал:
Закладка:
Немалые трудности встретились и при измерении звездных радиусов. Лишь для близких звезд можно напрямую определить угловой размер диска, причем основано это на весьма тонких оптических методах. В 1890 году американский физик-экспериментатор Альберт Абрахам Майкельсон (1852–1931) предложил использовать для астрономических целей интерферометр. Идея сводилась к следующему. Свет от точечного источника, проходя сквозь пару щелей, создает на расположенном сзади экране характерную интерференционную картину красивый узор из ярких и темных линий. Однако если источник обладает неисчезающим угловым размером, то при определенном расстоянии между щелями эта картина разрушается. Зная это расстояние и длину волны света, можно оценить и угловой диаметр звезды, после чего, используя известное расстояние до звезды и простые правила тригонометрии, найти ее радиус.
Другая возможность существует для затменных двойных звезд. Если удается определить орбитальные скорости компонент, то радиусы неплохо оцениваются просто по длительности затмений. Удобство метода кроется в том, что радиусы иногда измеряются даже без предварительного выяснения расстояния до звезды. Наконец, в связи с развитием теории теплового излучения появился еще один очень общий, хотя и не слишком точный, метод расчета радиусов — по известной светимости и эффективной температуре звезды оценивалась площадь ее поверхности.
Хотя масса и радиус, бесспорно, очень важные характеристики звезды, центральной в наблюдательном отношении характеристикой является ее энергетическая активность. Главное, что можно извлечь из наблюдений, — это количество и качество звездного излучения, то есть светимость звезды и ее спектральный тип.
Классификация по видимому блеску предполагала, что яркость звезд, отстоящих друг от друга на 5 звездных величин, отличается ровно в 100 раз [83] Звезда m-й величины ярче звезды n-й величины в (2,512)n-m раз (2,512? 102/5).
. Яркость определяется потоком излучения — количеством энергии, которое в единицу времени попадает на единичную площадку сферы, которой мысленно окружают звезду. Зная радиус этой сферы г (расстояние от наблюдателя до звезды) и поток излучения, можно по простой формуле найти светимость: L = 4πr 2F.
Классификация становилась все детальней. Звезды различаются не только по блеску, но и по виду спектра, что было открыто еще Фраунгофером. Итальянский астроном, директор Римской обсерватории Пьетро Анджело Секки (1818–1878), первым обратил внимание на связь между цветом звезд и их спектром. В работах периода 1863–1868 годов он разделил звезды на 4 группы по их спектральным особенностям (типичным линиям поглощения), характеризуя каждую группу определенным цветом: белым, желтым, оранжевым и красным.
Обилие спектральных портретов, полученных к концу 19 века, вызвало потребность в более подробном описании. В двух публикациях 1889 и 1897 годов директор Гарвардской обсерватории американец Эдвард Чарльз Пикеринг (1846–1919) предложил удобные буквенные обозначения для каждого класса, а впоследствии каждый класс был разбит на 10 групп, нумеруемых цифрами от 0 до 9. Последовательность классов, принятая ныне, задается буквами О, В, A, F, G, К, М [84] Кроме того, в начале этой последовательности включают особые классы Q, Р, W, а в конце — S, R, N. Иногда малыми латинскими буквами дополнительно характеризуют некоторые спектральные особенности звезд.
. Солнце по этой схеме относится к классу G2, Сириус — А1.
Для класса G характерны, например, сильно выраженные спектральные линии кальция и сравнительно ослабляющиеся при переходе от G0 к G9 линии водорода. Поэтому, зарегистрировав эти особенности в спектре какой-то звезды, мы можем полагать, что она довольно близка по свойствам к Солнцу.
Важную роль сыграла цветовая классификация, поскольку звезды по-разному излучают в различных диапазонах длин волн. Цвет можно довольно точно задавать количественно, применяя соответствующие оптические фильтры. Видимые звездные величины дополнительно различают по тому, сквозь какой фильтр они наблюдаются. Соответствующие индексы: R (красный), V (желтый, или визуальный, в основном соответствующий восприятию нормальным человеческим глазом), pg (фотографический, соответствующий данным на фотопластинках), В (голубой), U (ультрафиолетовый) присоединяются к указанию видимой или абсолютной звездной величины. Численная оценка показателя цвета делается по разности величин звезды, полученных в голубом и желтом фильтрах (так называемый B-V показатель). Это позволяет довольно точно включить звезду в один из спектральных классов.
Спектральные исследования открыли путь к определению эффективной температуры звездных поверхностей, точнее, верхних слоев звездной атмосферы. Оказалось, что спектральные классы содержат и своеобразную температурную классификацию звезд. Самые горячие — звезды класса О имеют поверхностные температуры порядка 30–40 тыс. градусов, самые холодные относятся к классу М, и их температура заключена в интервале 2,5–4 тыс. градусов.
Эта связь оказалась далеко не единственной. Вдоль последовательности спектральных классов — от М к А — возрастают массы, радиусы и светимости звезд. Это обстоятельство довольно легко усмотреть из диаграмм, где по оси абсцисс отложены спектральные классы (обычно от А до М) или показатели цвета, а по оси ординат — интересующая нас величина, например, масса или светимость.
Видимо, впервые использовал такую возможность датский астроном Эйнар Герцшпрунг (1873–1967), установивший в 1905 году зависимость между абсолютной звездной величиной и спектральным классом. Очень важный результат Герцшпрунга — разделение звезд по классам светимости на карликов и гигантов. Дело в том, что звезды одного и того же спектрального класса могут обладать чрезвычайно различной (в тысячи раз!) светимостью. При одинаковой температуре поверхности объяснить это можно только очень большим различием в радиусах. Предварительный отсев особо крупных и очень малых звезд позволил увидеть довольно четкую зависимость для обычного звездного населения [85] Обычное звездное население — это звезды так называемой главной последовательности. Ныне выделяется 7 классов светимости звезд. В I входят звезды-сверхгиганты, во II — яркие гиганты, в III — гиганты, в IV субгиганты, в V — звезды главной последовательности и карлики, в VI субкарлики и в VII — белые карлики. Иногда I класс светимости разбивают на два подкласса 1а (яркие сверхгиганты) и I (сверхгиганты).
. Идея Герцшпрунга была развита директором обсерватории Принстонского университета в США Генри Норрисом Ресселом (1877–1957), который тщательно проанализировал диаграмму «спектр — абсолютная звездная величина», впоследствии названную диаграммой Герцшпрунга — Рессела.
Интервал:
Закладка: