Александр Потупа - Открытие Вселенной - прошлое, настоящее, будущее

Тут можно читать онлайн Александр Потупа - Открытие Вселенной - прошлое, настоящее, будущее - бесплатно полную версию книги (целиком) без сокращений. Жанр: Прочая научная литература, издательство Юнацтва, год 1991. Здесь Вы можете читать полную версию (весь текст) онлайн без регистрации и SMS на сайте лучшей интернет библиотеки ЛибКинг или прочесть краткое содержание (суть), предисловие и аннотацию. Так же сможете купить и скачать торрент в электронном формате fb2, найти и слушать аудиокнигу на русском языке или узнать сколько частей в серии и всего страниц в публикации. Читателям доступно смотреть обложку, картинки, описание и отзывы (комментарии) о произведении.

Александр Потупа - Открытие Вселенной - прошлое, настоящее, будущее краткое содержание

Открытие Вселенной - прошлое, настоящее, будущее - описание и краткое содержание, автор Александр Потупа, читайте бесплатно онлайн на сайте электронной библиотеки LibKing.Ru

На основе обширных данных из астрономии, астрологии, географии, физики, математики, химии, биологии, истории, археологии и других наук автор рассказывает о строении Вселенной, истории человечества, о планетах Солнечной системы и Галактике, о звездах и их эволюции, о возможностях существования внеземных цивилизаций, о перспективах космических исследований, об идее контакта с инопланетянами.

Открытие Вселенной - прошлое, настоящее, будущее - читать онлайн бесплатно полную версию (весь текст целиком)

Открытие Вселенной - прошлое, настоящее, будущее - читать книгу онлайн бесплатно, автор Александр Потупа
Тёмная тема
Сбросить

Интервал:

Закладка:

Сделать

Более сложные явления отмечены для пульсаров, входящих в состав двойных систем с обычными звездами. Гравитационное поле нейтронной звезды начинает как бы отсасывать плазму из атмосферы своей соседки. Первоначально мощное магнитовращательное излучение отбрасывает эту плазму, и пульсар дополнительно теряет угловой момент. Эта стадия эволюции называется «пропеллером» — увеличение периода здесь происходит быстрее, чем в случае одинокого пульсара. Но с увеличением периода падает и мощность магнитного маяка. Наконец, начинается процесс аккреции — плазма захватывается пульсаром и передает ему свой угловой момент. Теперь рост периода должен прекратиться — согласно теории возникает своеобразная компенсация, и вращение происходит более или менее равномерно.

Это так называемая стадия рентгеновского пульсара, характерная мощным рентгеновским излучением аккрецирующей плазмы (светимость порядка 10 30–10 31Вт!). Источники такого типа действительно обнаружены, но все они имеют уже уменьшающийся период — струя вещества с соседней звезды как бы ускоряет пульсар. Это указывает на новое замечательное качество нейтронных звезд видимо, они служат превосходным индикатором эволюции соседей по двойной системе.

Но сюрпризы, связанные с нейтронными звездами, не ограничились пульсарами. Через 8 лет после их открытия один из советских спутников серии «Космос» зарегистрировал очень мощные и нерегулярные вспышки рентгеновского излучения. Более подробные исследования показали, что некие объекты нашей Галактики, расположенные ближе к ее центру, дают пиковую мощность излучения более 10 31Ватт, причем интервалы между вспышками довольно различны — от нескольких часов до целых месяцев. Так на астрофизической арене появились барстеры (от англ, burst — вспышка, быстрый взрыв) — нейтронные звезды, входящие в тесную двойную систему.

Схема аккреции в тесной двойной системе обычной и компактной звезды в - фото 4

Схема аккреции в тесной двойной системе обычной и компактной звезды (в частности, аккреции на пульсар или черную дыру)

В отличие от пульсаров, они лишены мощного магнитного поля, которое как бы засасывает заряженные частицы к магнитным полюсам. Поэтому аккрецирующая водородно-гелиевая плазма от соседней звезды более или менее равномерно устремляется к барстеру, формируя на его поверхности гигантский термоядерный котел. Падающее вещество разгоняется в поле тяготения барстера до околосветовых скоростей. За счет перехода кинетической энергии этого вещества в тепловую форму и выгорания водорода поджигается термоядерная реакция синтеза гелия в углерод. Именно гелиевый синтез и обеспечивает грандиозные вспышки. В одной вспышке барстера полностью выгорает примерно метровый слой спрессованного до 1 тонны в куб. сантиметре гелия, слой, окутывающий нейтронную звезду радиусом порядка 10 км. Нетрудно оценить, что масса такого слоя порядка 10 21 г, и при обычном энерговыделении гелия (10 11 Дж/г) энергия вспышки должна доходить до 10 32 Дж!

Чтобы обеспечить приток необходимого вещества, звезда-соседка должна отдавать барстеру свое вещество в темпе 10 17 г/с — одну земную массу за 2000 лет. Это обеспечивает полное восстановление гелиевого слоя в среднем за 10 4 с, но сокращает время жизни звезды-соседки. Если масса последней порядка солнечной, то все ее вещество израсходуется на вспышки барстера примерно за полмиллиарда лет. Так барстеры оказались не только превосходным образом открытого для обозрения «термоядерного ада» — того, который, по недавним понятиям, должен был прятаться глубоко в звездных недрах, но и кандидатами на роль активнейших «звездных вампиров».

На этом не исчерпывается обнаруженная в 60-е годы и позднее звездная экзотика. О самой интересной из них — черных дырах — мы поговорим во II части. Там же удастся обсудить и общую картину звездной эволюции, где обычные и экзотические звезды обретают свои естественные места.

Открытие Галактики

Шаги по открытию Галактики [89] Галактика, которой принадлежит Солнце, пишется с большой буквы — в отличие от остальных галактик. и Солнечной системы в чем-то очень схожи. Млечный Путь, один из первых ориентиров на звездном небе, выделялся с древнейших времен. Однако его астрономическая интерпретация возникла сравнительно поздно. Лишь систематический интерес астрономов к звездам на рубеже 18–19 веков позволил нащупать некоторые закономерности в группировке далеких светил. Появилась своеобразная гелиоцентрическая модель Гершеля-Каптейна, где Солнце считалось случайным центром огромного звездного скопления. При всем том Галактику еще не рассматривали как особый структурный элемент Вселенной.

Джон Гершель впервые и не слишком настойчиво высказал идею, что Магеллановы Облака, наблюдаемые в южном полушарии, представляют собой отдельные очень далекие звездные системы вроде Млечного Пути, но его гипотеза не произвела особого впечатления.

Прорыв наметился внезапно в связи с исследованием объектов, которые долгое время не привлекали внимания, — переменных звезд. В древности их как бы и не замечали, во всяком случае, неизвестны исследования даже тех переменных звезд, чей период нетрудно определить невооруженным глазом. Первый шаг в этой области сделал в 1596 году немецкий астроном Давид Фабрициус (1564–1617), описавший переменную Миру Кита. Устойчивый интерес к переменным возник лишь в период открытия двойных звезд.

Переменные звезды демонстрируют весьма различное поведение. Некоторые из них очень резко меняют блеск. В этом случае разумно считать, что мы имеем дело с планетообразной системой двух звезд, одна из которых периодически затмевает другую. Это так называемые затменные переменные звезды. Но существует и иная ситуация, когда блеск звезды меняется плавно, и такое изменение нельзя объяснить прохождением какого-либо тела через луч зрения. Остается единственный вариант — предположить, что из-за каких-то физических процессов меняется сама светимость звезды, то есть количество энергии, которое она излучает. Среди таких звезд, в свою очередь, выделяются две подгруппы — долгопериодические и короткопериодические. Так называемые цефеиды с периодом от нескольких суток до нескольких десятков суток и особым характером колебаний (похожим на колебания Дельты Цефея) привлекли внимание американского астронома из Гарвардской обсерватории Генриетты Суан Ливитт (1868–1921). В 1908 году, изучая фотографии Малого Магелланова Облака, полученные в Перуанском филиале, Ливитт обнаружила довольно четкую зависимость между яркостью цефеид и их периодом — чем ярче звезда, тем больше период колебаний блеска. Это обстоятельство окончательно выяснилось к 1912 году, и именно оно открыло путь к определению размеров Галактики и межгалактических расстояний. Поэтому цефеиды справедливо стали называть маяками космоса.

Читать дальше
Тёмная тема
Сбросить

Интервал:

Закладка:

Сделать


Александр Потупа читать все книги автора по порядку

Александр Потупа - все книги автора в одном месте читать по порядку полные версии на сайте онлайн библиотеки LibKing.




Открытие Вселенной - прошлое, настоящее, будущее отзывы


Отзывы читателей о книге Открытие Вселенной - прошлое, настоящее, будущее, автор: Александр Потупа. Читайте комментарии и мнения людей о произведении.


Понравилась книга? Поделитесь впечатлениями - оставьте Ваш отзыв или расскажите друзьям

Напишите свой комментарий
x