Джеймс Глейк - Хаос. Создание новой науки

Тут можно читать онлайн Джеймс Глейк - Хаос. Создание новой науки - бесплатно полную версию книги (целиком) без сокращений. Жанр: Прочая научная литература, издательство Амфора, год 2001. Здесь Вы можете читать полную версию (весь текст) онлайн без регистрации и SMS на сайте лучшей интернет библиотеки ЛибКинг или прочесть краткое содержание (суть), предисловие и аннотацию. Так же сможете купить и скачать торрент в электронном формате fb2, найти и слушать аудиокнигу на русском языке или узнать сколько частей в серии и всего страниц в публикации. Читателям доступно смотреть обложку, картинки, описание и отзывы (комментарии) о произведении.

Джеймс Глейк - Хаос. Создание новой науки краткое содержание

Хаос. Создание новой науки - описание и краткое содержание, автор Джеймс Глейк, читайте бесплатно онлайн на сайте электронной библиотеки LibKing.Ru

В 1970-х годах ученые начинают изучать хаотические проявления в окружающем нас мире: формирование облаков, турбулентность в морских течениях, колебания численности популяций растений и животных… Исследователи ищут связи между различными картинами беспорядочного в природе.

Десять лет спустя понятие «хаос» дало название стремительно расширяющейся дисциплине, которая перевернула всю современную науку. Возник особый язык, появились новые понятия: фрактал, бифуркация, аттрактор…

История науки о хаосе — не только история новых теорий и неожиданных открытий, но и история запоздалого постижения забытых истин. Эта книга — яркое и образное повествование о сложных и глубоких вещах, окрашенное драматизмом и поэтичностью. Прочитав «Хаос», вы уже никогда не будете смотреть на мир прежними глазами.

Хаос. Создание новой науки - читать онлайн бесплатно полную версию (весь текст целиком)

Хаос. Создание новой науки - читать книгу онлайн бесплатно, автор Джеймс Глейк
Тёмная тема
Сбросить

Интервал:

Закладка:

Сделать

Знай тогда Либхабер об открытии Файгенбаумом всеобщности, он бы точно представлял, что такое разветвления и где их искать. К 1979 г. все больше математиков и сведущих в математике физиков обращали внимание на новую теорию Файгенбаума, но в массе своей ученые, знакомые с трудностями изучения реальных физических систем, воздерживались от каких-либо определенных суждений по весьма веским причинам. Одномерные системы, вроде тех, которые исследовали Мэй и Файгенбаум, — это одно, а реальные, конструируемые инженерами механизмы — совсем другое. Поведение реальных устройств описывается не простыми алгебраическими, а громоздкими дифференциальными уравнениями. Более того, еще одна пропасть отделяла двух-, трех- и четырехмерные системы от жидкостных потоков, которые физики рассматривали как системы с потенциально бесконечным числом измерений. Даже структурированная ячейка Либхабера, содержала бесконечно большое число частиц жидкости, и каждая из них обладала, по крайней мере, потенциалом независимого движения. Значит, при определенных обстоятельствах любая частица могла стать источником нового изгиба или вихря.

«Никто и не помышлял, что действительно нужное нам основное движение в такой системе упрощается и описывается схемами», — признался Пьер Хоэнберг из лабораторий «AT & Т Bell» в Нью-Джерси. Он входил в число тех немногих физиков, которые доверяли как новой теории, так и связанным с ней экспериментам. «Файгенбаум, может быть, и мечтал о таком, но не высказывал своих чаяний вслух. Его работа была посвящена схемам. Почему они должны интересовать физиков? Забава, не более того… Пока шли игры со схемами, все казалось слишком далеким от того, что мы действительно стремились понять. Но когда теория подтвердилась на опыте, она нас не на шутку взволновала. Самое удивительное заключается в том, что, исследуя по-настоящему интересные системы, можно во всех деталях понять их поведение при помощи модели с малым числом степеней свободы».

В конце концов именно Хоэнберг познакомил экспериментатора и теоретика. Летом 1979 г. он проводил семинар в Аспене, где побывал Либхабер. (Четырьмя годами ранее, на такой же летней встрече, Файгенбаум слушал доклад Стива Смэйла о числе — одном-единственном числе, которое словно бы «взорвалось», когда математик наблюдал переход к хаосу в определенном уравнении.) Либхабер описал свои опыты с жидким гелием, а Хоэнберг сделал заметки. По пути домой он заглянул в Нью-Мексико повидаться с Файгенбаумом. Вскоре после этого Файгенбаум посетил Либхабера в Париже, и тот с гордостью продемонстрировал свою миниатюрную ячейку, дав Файгенбауму возможность разъяснить последний вариант его теории. Потом они вместе бродили по Парижу в поисках хорошей кофейни, и Либхабер позже вспоминал, как был удивлен, увидев столь молодого и, по его собственному выражению, живого ученого-теоретика.

Переход от схем к реальным потокам жидкости казался настолько значительным достижением, что даже самые щепетильные и недоверчивые ученые восприняли его как чудо. Каким образом природа смогла сочетать крайнюю сложность с предельной простотой, никто не понимал. Джерри Голлаб предложил «рассматривать это не как обычную связь между теорией и опытом, а как некое чудо». И это чудо в течение нескольких лет повторялось снова и снова в огромном бестиарии лабораторных систем: в увеличенных в размерах ячейках с водой и ртутью, электронных осцилляторах, лазерах и даже в химических реакциях. Теоретики, восприняв методы Файгенбаума, обнаружили и иные математические пути к хаосу, родственные удвоению периодов, — прерывистость и квазипериодичность, которые тоже доказали свою универсальность как в теории, так и в опытах.

Открытия ученых стимулировали компьютерные эксперименты. Физики обнаружили, что вычислительные машины воспроизводят изображения, аналогичные тем, что наблюдаются в реальных опытах, только в миллионы раз быстрее и куда надежнее. Многим более убедительной, нежели результаты Либхабера, казалась жидкостная модель Вальтера Францечини из Университета Модены (Италия) — система из пяти дифференциальных уравнений, генерировавшая аттракторы и удвоение периодов. Хотя Францечини ничего не знал о Файгенбауме, его сложная модель с большим числом измерений выдавала те же постоянные, которые нашел Файгенбаум с помощью своих одномерных схем. В 1980 г. группа европейских ученых выработала довольно убедительное математическое объяснение феномена: диссипация «опорожняет» сложную систему, устраняя множество противодействующих движений и фактически преобразуя поведение множества измерений в одно.

Тем не менее поиски странного аттрактора в реальных экспериментах с жидкостью еще не увенчались успехом, так что исследователи вроде Гарри Суинни не оставляли своих трудов и в 80-х годах. Когда наконец цель была достигнута, некоторые новоиспеченные компьютерные эксперты постарались преуменьшить значение полученных результатов, объявив их лишь приблизительным и предсказуемым подражанием тем великолепным детальным картинам, которые были уже созданы графическими терминалами. В компьютерном эксперименте, генерирующем тысячи или миллионы единиц информации, образцы сами собой приобретают более или менее ясные очертания. В лаборатории же, как и везде в реальном мире, нужную информацию необходимо отделять от шумов. В компьютерном эксперименте данные льются как из рога изобилия, а в лаборатории приходится сражаться за каждую каплю.

Однако новые теории Файгенбаума и других исследователей не привлекли бы внимания столь широкого круга ученых, будь они подкреплены одними только компьютерными экспериментами. Модификации, компромиссы и аппроксимации, необходимые для того, чтобы справиться с системой нелинейных уравнений, казались слишком сомнительными. В процессе моделирования пространство «разбивали» на огромное, но всегда казавшееся недостаточным число фрагментов, а сама компьютерная модель представлялась лишь совокупностью правил, выбранных наугад программистами. В отличие от такой модели, реальная жидкость, даже в крохотной ячейке миллиметровых размеров, обладает несомненной способностью к совершенно свободному, ничем не сдерживаемому движению, составляющему основу естественного беспорядка. Она еще может нас удивить.

В эпоху виртуальных построений, когда суперкомпьютеры создают модели потоков в любых системах, начиная от струйных турбин и заканчивая сердечными камерами, забываешь, как легко природа может поставить экспериментатора в тупик. Фактически ни один компьютер сегодня не в состоянии полностью имитировать даже такую несложную систему, как ячейка с жидким гелием Либхабера. Всякий раз, когда опытный физик изучает компьютерную модель, он вынужден задаваться вопросом, какая часть действительности не учтена и какие подвохи это сулит. Либхабер любил повторять, что не рискнул бы пуститься в дорогу на виртуальном самолете — кто знает, какой детали в нем недостает? Более того, он замечал, что компьютерные модели, помогая строить интуитивные догадки или совершенствовать вычисления, не становятся источником подлинных открытий. Во всяком случае, так звучало кредо истинного экспериментатора.

Читать дальше
Тёмная тема
Сбросить

Интервал:

Закладка:

Сделать


Джеймс Глейк читать все книги автора по порядку

Джеймс Глейк - все книги автора в одном месте читать по порядку полные версии на сайте онлайн библиотеки LibKing.




Хаос. Создание новой науки отзывы


Отзывы читателей о книге Хаос. Создание новой науки, автор: Джеймс Глейк. Читайте комментарии и мнения людей о произведении.


Понравилась книга? Поделитесь впечатлениями - оставьте Ваш отзыв или расскажите друзьям

Напишите свой комментарий
x