Норберт Винер - Кибернетика или управление и связь в животном и машине
- Название:Кибернетика или управление и связь в животном и машине
- Автор:
- Жанр:
- Издательство:неизвестно
- Год:неизвестен
- ISBN:нет данных
- Рейтинг:
- Избранное:Добавить в избранное
-
Отзывы:
-
Ваша оценка:
Норберт Винер - Кибернетика или управление и связь в животном и машине краткое содержание
«Кибернетика» — известная книга выдающегося американского математика Норберта Винера (1894—1964), сыгравшая большую роль в развитии современной науки и давшая имя одному из важнейших ее направлений. Настоящее русское издание является полным переводом второго американского издания, вышедшего в 1961 г. и содержащего важные дополнения к первому изданию 1948 г. Читатель также найдет в приложениях переводы некоторых статей и интервью Винера, включая последнее, данное им незадолго до смерти для журнала «Юнайтед Стэйтс Ньюс энд Уорлд Рипорт».
Книга, написанная своеобразным свободным стилем, затрагивает широкий круг проблем современной науки, от сферы наук технических до сферы наук социальных и гуманитарных. В центре — проблематика поведения и воспроизведения (естественного и искусственного) сложных управляющих и информационных систем в технике, живой природе и обществе. Автор глубоко озабочен судьбой науки и ученых в современном мире и резко осуждает использование научного могущества для эксплуатации и войны.
Книга предназначена для научных работников и инженеров.
Кибернетика или управление и связь в животном и машине - читать онлайн бесплатно полную версию (весь текст целиком)
Интервал:
Закладка:
Рис. 10. Интерферометр Майкельсона
Все это неявно содержалось в работе Майкельсона. Нетрудно видеть, что при выполнении преобразования Фурье над интерференционными полосами интерферометр дает нам энергетический спектр света и тем самым по существу является спектрометром. Более того, это самый точный из известных нам типов спектрометров.
Спектрометр такого типа получил должное признание лишь в последние годы. Мне говорили, что теперь он принят в качестве важного средства прецизионных измерений. Отсюда видно, что методы обработки автокорреляционных записей, которые я сейчас изложу, применимы также в спектроскопии и позволяют довести до предела ту информацию, которую может дать спектрометр.
Рассмотрим, как получить спектр мозговой электрической волны по автокорреляции. Пусть C ( t ) — автокорреляция функции f ( t ). Тогда C ( t ) можно записать в виде
(10.02)
Здесь F всегда является возрастающей или по меньшей мере неубывающей функцией от ω; мы будем называть ее интегральным спектром функции f . Вообще говоря, этот интегральный спектр состоит из трех аддитивных частей. Линейчатая часть спектра возрастает лишь на счетном множестве точек. После ее исключения останется непрерывный спектр, равный, в свою очередь, сумме двух частей: одна из них возрастает только на множестве меры нуль, а другая абсолютно непрерывна и является интегралом положительной интегрируемой функции.
Будем впредь полагать, что первые две части спектра: дискретная часть и непрерывная часть, возрастающая [c.274]на множестве меры нуль, — отсутствуют. В этом случае можно написать
(10.03)
где φ (ω) — спектральная плотность. Если φ (ω) принадлежит к классу Лебега L 2, то можно написать
(10.04)
Как видно по автокорреляционной кривой мозговых волн, преобладающая часть мощности спектра сосредоточена в окрестности частоты 10 гц. В таком случае φ (ω) будет иметь форму, подобную следующей диаграмме:
Два пика около 10 и —10 суть зеркальные изображения друг друга.
Известны различные способы численного выполнения разложения Фурье, включая применение интегрирующих приборов и цифровые вычислительные процессы. В обоих случаях неудобством является то, что главные пики расположены около 10 и —10, а не около 0. Но существуют способы переноса гармонического анализа в окрестность нулевой частоты, которые весьма сокращают объем работы. Заметим, что
(10.05)
Другими словами, если умножить С ( t ) на е 20π it , то новый гармонический анализ даст нам полосу вблизи нулевой частоты и другую полосу вблизи частоты +20. Таким образом, если произвести такое умножение и исключить полосу вблизи +20 методами усреднения, равносильными применению волнового фильтра, то мы сведем наш гармонический анализ к гармоническому анализу в окрестности нулевой частоты. [c.275]
Но
(10.06)
Следовательно, действительная и мнимая части функции С ( t )е 20π it равны соответственно
С ( t ) cos 20π t и iС ( t ) sin 20π t .
Частоты в окрестности +20 можно исключить, пропустив эти две функции через фильтр нижних частот, что равносильно усреднению по интервалу в одну двадцатую секунды или более.
Пусть мы анализируем кривую, у которой бо́льшая часть мощности сосредоточена вблизи частоты 10 гц . Умножив эту кривую на косинус или синус от 20π t , получим кривую, являющуюся суммой двух составляющих: одна из них ведет себя локально примерно так:
а другая — примерно так:
Усреднив вторую кривую по интервалу в 0,1 сек, получим нуль. Усреднив первую кривую, получим половину максимальной высоты. Таким образом, сглаживая С ( t ) cos 20π t и iС ( t ) sin 20π t , мы получим хорошие приближения соответственно к действительной и мнимой части некоторой функции, имеющей все свои частоты в окрестности нуля, и эта функция будет обладать таким же распределением частоты вокруг нуля, какое одна часть спектра кривой C ( t ) имела вокруг 10.
Обозначим теперь через K 1( t ) результат сглаживания произведения С ( t ) cos 20π t , а через K 2( t ) — результат сглаживания произведения С ( t ) sin 20π t . Мы хотим найти [c.276]
(10.07)
Выражение (10.07) должно быть действительным, так как это спектр. Следовательно, оно будет равно
(10.08)
Другими словами, если найти косинус-преобразование от K 1и синус-преобразование от K 2и сложить их друг с другом, то мы получим смещенный спектр функции f . Можно показать, что K 1будет четной, a K 2— нечетной функцией. Стало быть, если определить косинус-преобразование от K 1и прибавить или вычесть синус-преобразование от K 2, мы получим спектр соответственно справа и слева от центральной частоты на расстоянии ω. Этот метод получения спектра мы будет называть методом гетеродинирования.
Коль скоро автокорреляционные кривые локально представляют собой почти синусоиду с периодом, скажем, 0,1 сек (как в случае автокорреляции мозговых волн на рис. 9), то вычисления, связанные с методом гетеродинирования, можно упростить. Мы берем нашу автокорреляцию через интервалы в 1/40 сек. Затем берем последовательность значений при 0, 1/20, 2/20, 3/20 сек и т. д. и меняем знак на дробях с нечетным числителем. Усредняя по очереди эти значения по достаточно длинному отрезку, получим величину, приблизительно равную K 1( t ). Взяв аналогично значения автокорреляции при 1/40, 3/40, 5/50 сек и т. д. с чередующимися знаками и проведя такое же усреднение, получим приближенную величину K 2( t ). Дальнейшая процедура очевидна.
Читать дальшеИнтервал:
Закладка: