Владимир Сурдин - Разведка далеких планет

Тут можно читать онлайн Владимир Сурдин - Разведка далеких планет - бесплатно ознакомительный отрывок. Жанр: Прочая научная литература, издательство ФИЗМАТЛИТ, год 2011. Здесь Вы можете читать ознакомительный отрывок из книги онлайн без регистрации и SMS на сайте лучшей интернет библиотеки ЛибКинг или прочесть краткое содержание (суть), предисловие и аннотацию. Так же сможете купить и скачать торрент в электронном формате fb2, найти и слушать аудиокнигу на русском языке или узнать сколько частей в серии и всего страниц в публикации. Читателям доступно смотреть обложку, картинки, описание и отзывы (комментарии) о произведении.

Владимир Сурдин - Разведка далеких планет краткое содержание

Разведка далеких планет - описание и краткое содержание, автор Владимир Сурдин, читайте бесплатно онлайн на сайте электронной библиотеки LibKing.Ru

Мечта каждого астронома — открыть новую планету. Раньше это случалось редко: одна — две за столетие. Но в последнее время планеты открывают часто: примерно по одной большой планете в неделю, ну а мелких — по сотне за ночь! В книге рассказано о том, как велись и ведутся поиски больших и маленьких планет в Солнечной системе и вдали от нее, какая техника для этого используется, что помогает и что мешает астрономам в этой работе. Рассказано, как дают планетам имена и какие открытия ждут нас впереди. В приложении приведены точные данные о планетах, созвездиях и крупнейших телескопах.

Книга предназначена старшеклассникам, учителям и студентам, а также всем любителям астрономии.

На лицевой стороне переплета: Меркурий, Венера и Луна над австралийским комплексом радиотелескопов АТСА (Australia Telescope Compact Array) близ города Наррабри, Новый Южный Уэльс. Фото: Graeme L. White и Glen Cozens.

На обратной стороне переплета: телескоп «Вильям Гершель» диаметром 4,2 м, установленный на о. Пальма (Канарские о-ва). Лазерный луч используется для работы системы адаптивной оптики.

На форзаце: возможно, так с высоты птичьего полета выглядит поверхность Тритона, крупнейшего спутника Нептуна. Справа — планета, слева вдали — Солнце. Рисунок: ESO/Calgada L.

На нахзаце: возможно, так выглядит поверхность Плутона, покрытая наледями замерзшего метана. Слева — Харон, справа — Солнце, которое светит там в 1000 раз слабее, чем на Земле. Рисунок: ESO/Calgada L.

Разведка далеких планет - читать онлайн бесплатно ознакомительный отрывок

Разведка далеких планет - читать книгу онлайн бесплатно (ознакомительный отрывок), автор Владимир Сурдин
Тёмная тема
Сбросить

Интервал:

Закладка:

Сделать

Чтобы узнать будущее земной атмосферы, мы должны посмотреть на Марс. Из‑за своей удаленности от Солнца он никогда не был особенно горячим, но, имея небольшую массу, он плохо удерживает летучие газы в своей атмосфере. Марс красный из‑за того, что его водяной пар расщепился на водород и кислород; водород улетел в космос, а кислород окислил (покрыл ржавчиной) грунт. Отсутствие у Марса магнитного поля и мощная метеоритная бомбардировка тоже способствовали улетучиванию атмосферы. Странно, что Марсу вообще удалось хоть что‑то сохранить. Сегодня его атмосфера в 100 раз тоньше земной. Она почти не препятствует астрономическим наблюдениям с поверхности планеты, но и жизнь на ней поддержать не в состоянии. Если Землю ожидает такая же судьба, то каким будет ее небо?

Днем на Марсе небо розовое из‑за мелкой неоседающей пыли, которую ветер поднимает в период весенне-летних пылевых бурь. Сила тяжести на Марсе вдвое меньше, чем на Земле, поэтому пыль долго держится в воздухе. Поскольку атмосфера Марса очень разрежена, розовое небо там не такое яркое, как голубое небо Земли. Облака из водяных кристаллов на Марсе — редкое явление, слишком уж сухой там воздух. Зато над поверхностью иногда поднимаются плотные пылевые облака. Они обволакивают почти всю планету на многие дни и даже месяцы. Сквозь них не видны звезды и с трудом пробиваются лучи Солнца.

Ночью на Марсе прекрасно видны звезды, планеты и все прочие астрономические явления. Яркие стрелы метеоров вспыхивают там, вероятно, даже чаще, чем на Земле, поскольку в окрестности Марса движется больше мелких космических частиц, чем вблизи Земли. По утрам и вечерам, пока Солнце еще не взошло, марсиане (например, будущие колонисты с Земли) смогут любоваться двумя яркими светилами — Венерой и Землей. Впрочем, эти планеты, а также спутники Марса Фобос и Деймос должны быть легко заметны и днем, ведь безоблачное небо Марса довольно темное. Возможно даже, на нем видны некоторые яркие звезды, если Солнце находится не слишком близко от них и его рассеянный свет не мешает наблюдениям.

Итак, на Венере звезд не видно даже ночью, а на Марсе они видны и днем. Лишь на земном небе каждому светилу предоставлено свое время суток.

Пока наша Земля идет «марсианским» путем: она тоже теряет атмосферу, прежде всего водород, образующийся при расщеплении водяного пара. Мощность солнечного излучения растет, и высыхание Земли ускоряется. Сегодня водород оттекает из земной атмосферы «тонкой струйкой», так как основной носитель водорода — водяной пар — обычно не поднимается в стратосферу, где он может быть разрушен ультрафиолетом. Пар конденсируется в нижних слоях атмосферы и падает дождем обратно на поверхность. Но Солнце постепенно становится ярче, примерно на 10 % за каждый миллиард лет. Когда Солнце разогреет нашу планету и ее океаны, атмосфера станет более влажной, и струйка утекающего водорода превратится в могучий поток. Считается, что этот процесс станет ощутимым, когда яркость Солнца возрастет на 10 %, то есть через миллиард лет, и еще миллиард лет понадобится для осушения земных океанов. Земля станет пустынной планетой с крохотными полярными шапками и жалкими озерцами воды. Еще через два миллиарда лет Солнце так нещадно опалит Землю, что даже полярные оазисы исчезнут и последние остатки воды испарятся. Парниковый эффект усилится настолько, что начнут плавиться камни. Земля станет такой же безжизненной, как Венера. А дальнейшая эволюция Солнца, его превращение в красный гигант и усиление мощности свечения в сотни раз приведет к полной потере атмосферы. Земля станет похожа на современный Меркурий: место, идеальное для астрономических наблюдений и больше ни для чего.

Впрочем, в своих футуристических построениях мы зашли слишком далеко. Сегодня на Земле мы имеем идеальный баланс условий для жизни и наблюдения Вселенной. Чтобы в полной мере воспользоваться этими благами, астрономы изобрели телескоп.

Рождение телескопа

Тысячи лет астрономы изучали Вселенную без телескопа. Хотя стекло было известно египтянам еще в 3800 до н. э., да и финикийцы славились как стеклоделы, оптические свойства стекла были полностью оценены лишь в эпоху Средневековья. В XIII в. Роджер Бэкон одним из первых начал изучать свойства линз и зеркал. Очки появились в Италии около 1300 г., а к началу XVI в. оптические центры возникли в Германии и Голландии. Первая зрительная труба была сделана в Голландии в 1608 г., но трудно сказать, кем именно. Возможно, ее создали независимо друг от друга мастера очковых стекол Ганс Липперсгей, Яков Мециус и Захария Янсен. Кажется, Липперсгей был первым, кто для увеличения удаленных объектов применил комбинацию линз — положительную в качестве объектива и отрицательную как окуляр. Такая комбинация до сих пор используется в самых простых — театральных и детских — биноклях. Весной 1609 г. о голландском изобретении узнал в Италии Галилей и, не имея детального описания, сам за несколько недель разработал конструкцию и построил то, что теперь мы называем телескопом. Направив инструмент на небо, Галилей открыл новую эру в наблюдательной астрономии, о которой не мечтали его предшественники и которая продолжается до наших дней.

Галилей сделал много телескопов с диаметром объектива до 6 см, фокусным расстоянием до 170 см и увеличением до 35 раз. Они были устроены по одной схеме: объектив — плосковыпуклая или двояковыпуклая линза, окуляр — плосковогнутая или двояковогнутая. Изображение в таком телескопе прямое и довольно яркое, но поле зрения маленькое. Как все конструкции с простым объективом, телескоп Галилея страдал сильной сферической и очень сильной хроматической аберрацией.

Рис 32 Слева хроматическая аберрация Стекло преломляет коротковолновый - фото 35 Рис 32 Слева хроматическая аберрация Стекло преломляет коротковолновый - фото 36
Рис. 3.2. Слева: хроматическая аберрация. Стекло преломляет коротковолновый свет сильнее, чем длинноволновый, и фокус фиолетовых лучей ( Оф ) лежит ближе к линзе, чем красных (Ок). При любом расположении экрана изображение звезды получается расплывчатым, в окружении цветного ореола. Справа: сферическая аберрация. Краевая зона сферической линзы фокусирует свет на меньшем расстоянии (точка С), чем центральная зона (точка D), и даже в области наилучшей фокусировки (плоскость fе) точечный источник проецируется как пятно.
Рис 33 Телескопы Галилея хранящиеся в Музее истории науки рядом с галереей - фото 37 Рис 33 Телескопы Галилея хранящиеся в Музее истории науки рядом с галереей - фото 38
Рис. 3.3. Телескопы Галилея, хранящиеся в Музее истории науки, рядом с галереей Уффици, Флоренция. Трубы двух телескопов привязаны шелковыми ленточками к музейной подставке (это не штатив, которым пользовался Галилей!). Разбитый объектив третьего телескопа вставлен в виньетку из слоновой кости.

Сферическая аберрация возникает потому, что у линзы со сферическими поверхностями разные радиальные зоны имеют различное фокусное расстояние. Поэтому лучи, прошедшие вблизи центра и вблизи края линзы, собираются в разных точках и нигде не дают резкого изображения. Хроматическая аберрация возникает из‑за того, что стекло имеет разный коэффициент преломления для лучей разного цвета, из‑за чего простая линза не может собрать все лучи в одну точку: если в лучах одного цвета изображение звезды сфокусировано в точку, то вокруг нее виден расплывчатый ободок, образованный лучами других цветов. Сам Галилей боролся с этими недостатками линз, закрывая их внешнюю часть диафрагмой. Например, на одном из сохранившихся его телескопов (рис. 3.3) объектив диаметром 5.1 см задиафрагмирован до 2,6 см, а окуляр диаметром 2,6 см — до 1.1 см. Второй телескоп на рис. 3.3 имеет объектив 3,7 см, задиафрагмированный до 1,6 см. Этот прием частично помогал: изображение становилось более четким, но его яркость значительно снижалась.

Читать дальше
Тёмная тема
Сбросить

Интервал:

Закладка:

Сделать


Владимир Сурдин читать все книги автора по порядку

Владимир Сурдин - все книги автора в одном месте читать по порядку полные версии на сайте онлайн библиотеки LibKing.




Разведка далеких планет отзывы


Отзывы читателей о книге Разведка далеких планет, автор: Владимир Сурдин. Читайте комментарии и мнения людей о произведении.


Понравилась книга? Поделитесь впечатлениями - оставьте Ваш отзыв или расскажите друзьям

Напишите свой комментарий
x