Владимир Сурдин - Разведка далеких планет
- Название:Разведка далеких планет
- Автор:
- Жанр:
- Издательство:ФИЗМАТЛИТ
- Год:2011
- Город:Москва
- ISBN:978-5-9221-1288-8
- Рейтинг:
- Избранное:Добавить в избранное
-
Отзывы:
-
Ваша оценка:
Владимир Сурдин - Разведка далеких планет краткое содержание
Мечта каждого астронома — открыть новую планету. Раньше это случалось редко: одна — две за столетие. Но в последнее время планеты открывают часто: примерно по одной большой планете в неделю, ну а мелких — по сотне за ночь! В книге рассказано о том, как велись и ведутся поиски больших и маленьких планет в Солнечной системе и вдали от нее, какая техника для этого используется, что помогает и что мешает астрономам в этой работе. Рассказано, как дают планетам имена и какие открытия ждут нас впереди. В приложении приведены точные данные о планетах, созвездиях и крупнейших телескопах.
Книга предназначена старшеклассникам, учителям и студентам, а также всем любителям астрономии.
На лицевой стороне переплета: Меркурий, Венера и Луна над австралийским комплексом радиотелескопов АТСА (Australia Telescope Compact Array) близ города Наррабри, Новый Южный Уэльс. Фото: Graeme L. White и Glen Cozens.
На обратной стороне переплета: телескоп «Вильям Гершель» диаметром 4,2 м, установленный на о. Пальма (Канарские о-ва). Лазерный луч используется для работы системы адаптивной оптики.
На форзаце: возможно, так с высоты птичьего полета выглядит поверхность Тритона, крупнейшего спутника Нептуна. Справа — планета, слева вдали — Солнце. Рисунок: ESO/Calgada L.
На нахзаце: возможно, так выглядит поверхность Плутона, покрытая наледями замерзшего метана. Слева — Харон, справа — Солнце, которое светит там в 1000 раз слабее, чем на Земле. Рисунок: ESO/Calgada L.
Разведка далеких планет - читать онлайн бесплатно ознакомительный отрывок
Интервал:
Закладка:
Для XVIII в. характерен быстрый прогресс в изготовлении рефлекторов. Английский оптик Джон Хэдли (Гадлей, 1682–1744) первым использовал оптический метод контроля формы зеркала. Шотландский оптик и астроном Джеймс Шорт (1710–1768) построил множество прекрасных телескопов по схеме Грегори. А Вильям Гершель с помощниками создал в 1789 г. крупнейший по тем временам телескоп с зеркалом диаметром 126 см и фокусным расстоянием 12 м; с этим «Великим 40–футовым» мы уже познакомились в главе 2. Заметим, что в нем впервые было реализовано наблюдение в главном фокусе, смещенном к краю апертуры (система Ломоносова — Гершеля). После изобретения фотографии наблюдение в главном фокусе стало нормой.
Но и до появления фотопластинки большие рефлекторы уверенно демонстрировали свое главное преимущество — высокую проницающую способность, то есть позволяли замечать тусклые объекты. Вильям Гершель с помощью своего любимого «Большого 20–футового» диаметром 18 дюймов в 1787 г. открыл спутники Урана — Титанию и Оберон, имеющие блеск около 14 m. До этого астрономы замечали спутники с блеском не слабее 11 m, и вдруг — скачок сразу на три звездные величины (табл. 3.1). Результат Гершеля немного улучшил другой любитель астрономии — английский пивовар Уильям Ласселл (1799–1880), построивший близ Ливерпуля рефлектор диаметром 24 дюйма. И это было вполне закономерно: используя зеркало почти вдвое большей площади, он и продвинутся к вдвое более тусклым объектам. При этом Ласселл повторил рекорды Галилея, Кассини и Гершеля — открыл 4 спутника (он обнаружил Гиперион независимо от американских астрономов отца и сына Бондов). Любопытно, что вслед за Гершелем и лордом Россом Ласселл в 1855 г. тоже построил огромный 48–дюймовый рефлектор. Понимая, что Англия — не лучшее место для астрономических наблюдений, Ласселл установил свой гигантский инструмент в прекрасном районе — на острове Мальта. Однако, как и его предшественники, он не обнаружил новых спутников. Для этого требовался новый технологический рывок.
Фактически прорыв Гершеля не был превзойден в течение столетия. Лишь в самом конце XIX в. американский астроном Уильям Пикеринг смог продвинуться еще на две звездных величины, обнаружив спутник Сатурна Фебу, но дело тут было не в качестве телескопа: Феба стала первым спутником, открытым с помощью фотографии. Вообще говоря, этот факт обескураживает: фотоэмульсия обладает неоспоримым преимуществом перед нашим зрением: она может долго накапливать свет тусклых звезд. Почему же в течение полувека развития фотографии глаз выдерживал конкуренцию с фотокамерой?
Глаз и телескоп
Вначале этой главы мы уже говорили об особенностях зрения. Если продолжить сравнение нашего глаза с оптической техникой, созданной человеком, то придется перевести разговор со старых фотоаппаратов на современные видеокамеры. Наши глаза, как хорошая камера, имеют собственный «процессор», передающий в мозг уже частично проанализированную и исправленную картину увиденного. У электронных устройств есть система стабилизации изображения, делающая незаметным дрожание рук оператора — глаз тоже имеет систему, которая стремится сделать незаметными для нас дрожание головы и глазного яблока, смазывающее «картинку». Эта же система работает при визуальном наблюдении в телескоп: наше зрение компенсирует атмосферное дрожание и размытие изображения, чего фотокамера делать не умеет. Точнее, не умела до недавних пор, но об этом чуть позже.
Каждый орган человека становится более умелым в результате тренировки — и руки пианиста, и ноги балерины. Оказывается, что и глаза тоже можно научить видеть лучше. Известно, что первый опыт наблюдения в телескоп часто обескураживает. «Я не вижу никаких деталей», — сетует начинающий наблюдатель, глядя на Марс или даже на огромный Юпитер. А опытный астроном с помощью того же телескопа составляет подробные карты поверхности планет: у него «тренированный глаз», он научился настраивать свое зрение на астрономические наблюдения. До определенной степени этому может научиться каждый, если будет систематически наблюдать небо. Но и природные данные тоже важны, так же как у пианистов и балерин. У большинства людей практический предел при наблюдении звезд или звездообразных объектов, таких как спутники планет или астероиды, лежит между 5 mи 6 m. Но возможности глаза улучшает оптика. Даже применение простого полевого бинокля 7x50 (т. е. 7–кратный с объективами диаметром 50 мм) делает доступными звезды 9 m. В телескоп можно увидеть еще более тусклые звезды, хотя наблюдение в окуляр одним глазом немного снижает общую чувствительность зрения.
Таблица 3.2
Предельная звездная величина ( V lim ) при визуальных наблюдениях
Диаметр объектива, мм | V lim | Свеча (расстояние, км) | Количество звезд | Примечание |
7 | 4,5* | 1,4 | 900 | Глаза (в городе) |
50 | 8,8* | 9,8 | 98 000 | Бинокль 7x50 |
100 | 9,6 | 14 | 226 000 | 4–дюймовый рефрактор |
150 | 10,4 | 20 | 509 000 | 6–дюймовый самодельный рефлектор |
500 | 13,0 | 68 | 6,3 млн | Дорогой любительский телескоп |
1000 | 14,6 | 140 | 26 млн | Рефлектор университетского класса |
2 400 | 16,5 | 340 | 124 млн | Телескоп «Хаббл» в космосе |
10 000 | 19,5 | 1300 | 1 млрд | Телескоп «Кек» с адаптивной оптикой |
* Наблюдение ведется двумя глазами.
Табл. 3.2. демонстрирует возможности нашего зрения, усиленные оптической техникой. В третьей колонке указано примерное расстояние, на котором глаз различает свет обычной свечи. Нужно помнить, что таблица составлена для среднего человека, а некоторые астрономы — наблюдатели отличаются повышенной чувствительностью зрения (и большим опытом наблюдений!), поэтому способны продвинуться еще на 1 m.
Эволюция телескопа
Итак, в XVIII в. вперед вырвался рефлектор с металлическим зеркалом. Но в эти же годы постепенно совершенствовалась и конструкция рефрактора. Важнейшим событием в оптике стало открытие ахроматического объектива. Это сделал в 1729 г. адвокат Честер Мур Холл, заметивший, что объектив, составленный из двух линз — выпуклой из легкого стекла крона и вогнутой из тяжелого флинта (соответственно с ничтожной и с большой примесью окиси свинца), — не окрашивает изображений. Такой «дублет» имел значительно меньшую хроматическую аберрацию, чем длиннофокусные одиночные линзы. Холл никак не закрепил за собой это изобретение. Знавший об открытии Холла Джон Доллонд в 1760 г. взял патент и стал выпускать ахроматические объективы. Но они были небольшого размера, не более 10–13 см, и качество стекла, особенно флинта, было невысоким. Поэтому конкурировать с зеркалами Шорта и Гершеля они не могли.
Читать дальшеИнтервал:
Закладка: