Ричард Фейнман - Радость познания
- Название:Радость познания
- Автор:
- Жанр:
- Издательство:ACT
- Год:2013
- ISBN:978-5-17-078430-1
- Рейтинг:
- Избранное:Добавить в избранное
-
Отзывы:
-
Ваша оценка:
Ричард Фейнман - Радость познания краткое содержание
Ричард Фейнман (1918–1988) — выдающийся американский физик, удостоенный Нобелевской премии по квантовой электродинамике, один из создателей атомной бомбы, автор знаменитого курса лекций, который стал настольной книгой для каждого, кто открывает для себя потрясающий мир физики.
Великолепная коллекция коротких работ гениального ученого, талантливого педагога, великолепного оратора и просто интересного человека Ричарда Фейнмана — блестящие, остроумные интервью и речи, лекции и статьи. Вошедшие в этот сборник работы не просто дают читателю представление об энциклопедическом интеллекте прославленного физика, но и равно позволяют заглянуть в его повседневную жизнь и внутренний мир.
Книга мнений и идей — о перспективах науки, об ответственности ученых за судьбы мира, о главных проблемах бытия — познавательно, остроумно и необыкновенно интересно.
Радость познания - читать онлайн бесплатно ознакомительный отрывок
Интервал:
Закладка:
Журналист: Физические теории по-прежнему будут абстрактными и математическими? Смог бы сегодня работать такой теоретик начала девятнадцатого века, как Фарадей, не обладающий высокой математической подготовкой, но с мощной физической интуицией?
Фейнман: Я бы сказал, что его шансы невелики. Во-первых, вам необходима математика просто для понимания того, что на настоящий момент сделано. Сегодня поведение субъядерных систем выглядит настолько странно по сравнению с системами, с которыми имели дело прежде и анализ которых казался абстрактным: чтобы понять лед, надо понять вещи, очень не похожие на лед. Модели Фарадея были механическими — пружинки, провода и напряженные модули в пространстве, — его образы были взяты из стандартной геометрии. Думаю, этот подход себя не исчерпал; однако все, что мы обнаружили в этом веке, резко отличается от знакомой нам физики, все еще очень неопределенно — и дальнейший прогресс возможен только в тандеме с математикой.
Журналист: Ограничит ли это число людей, которые могут внести вклад в науку, или хотя бы понять, что было сделано?
Фейнман: Или кто-нибудь разработает способ подачи материала, чтобы его было проще усваивать. Может быть, эти вопросы будут изучаться в более раннем возрасте. Это неверно, что современную математику считают слишком серьезной, трудной для понимания. Возьмите, например, компьютерное программирование; тщательно разработанная для этой цели логика — это один из способов думать, а мамы и папы говорят детям, что она доступна только профессорам. Теперь это часть повседневной работы, это способ жить. У детей есть компьютер, и он им интересен, они делают на нем удивительные, сумасшедшие вещи!
Журналист: С помощью курсов программирования, которые сейчас на каждом шагу!
Фейнман: Я не верю в то, что только избранные способны понять математику. В конце концов, математику придумали люди. У меня как-то был учебник по дифференциальному и интегральному исчислению, в котором говорилось: «Что может сделать один дурак, то может сделать и любой другой человек». Все, что мы успели узнать о природе, может казаться абстрактным и недоступным для понимания тому, кто этого не изучал, однако нашлись дураки, которые это изучили — а в следующем поколении уже все дураки станут понимать эти вопросы.
Во всем этом угадывается тенденция к помпезности — представить все излишне глубоким и основательным. Мой сын выбрал курс философии, и вчера вечером мы смотрели работы Спинозы — там оказалось много незрелых доводов! Все эти атрибуты и субстанции, постоянная лишенная смысла «жвачка» — мы начали смеяться. Но почему? Это великий фламандский философ — а мы над ним смеемся. А все потому, что ему нет прощения! В тот же период жил Ньютон, Харви изучал кровеносную систему, были люди, обладающие методиками анализа, благодаря которым мы двигались вперед. Возьмите любое утверждение Спинозы и оглянитесь вокруг — вы не сможете сказать, что он был прав. Действительно, люди испытывали благоговейный трепет оттого, что он имел смелость задать эти великие вопросы, но хороша ли такая смелость, если вы ничего не получите в ответ на эти вопросы?
Журналист: В ваших лекциях комментарии философов относительно науки получили по заслугам…
Фейнман: Меня злят не сами философы, а их высокомерие. Если бы они умели посмеяться над собой! Если бы они просто сказали: «Я думаю, что это должно быть так, но фон Лейпциг считает, что это должно быть не так, и это тоже хорошая гипотеза». Если бы они объяснили, что это всего лишь догадка… Но лишь немногие признаются в этом — вместо научного исследования они хватаются за возможность, что нет никакой первичной фундаментальной частицы, и настаивают, чтобы вы остановили работу и взвесили еще раз все «за» и «против». «Вы недостаточно глубоко все продумали, давайте я дам вам определение нашего мира». Ну уж нет — я продолжу исследования без всякого определения!
Журналист: Как вы определяете, какая проблема стоит того, чтобы ею заняться?
Фейнман: Когда я учился в средней школе, у меня было представление, что нужно взвесить важность проблемы и умножить ее на ваши шансы решить ее. Знаете, ребенок с техническим складом ума любит оптимизировать все и вся; если вы хорошенько взвесите все «за» и «против», впоследствии вам не придется жалеть, что вы потратили свою жизнь на очень сложную проблему, так ничего и не добившись, или решили целый ряд маленьких проблем, с которыми другие справились бы не хуже.
Журналист: Давайте возьмем проблему, за которую вы, Швингер и Томонага получили Нобелевскую премию. Три различных подхода: правда ли то, что в тот момент эта проблема созрела для решения?
Фейнман: Квантовая электродинамика была разработана в конце 1920-х годов Дираком и другими учеными, сразу же после самой квантовой механики. Они сделали ее фундаментально правильной, но если вы начинаете решать их сложные уравнения, уравнения оказываются очень трудными для решения. Можно получить хорошее приближение первого порядка, но когда вы пытаетесь усовершенствовать его, учитывая поправки, неожиданно начинают возникать бесконечности. Все это знали в течение двадцати лет — это указано в конце всех книг по квантовой теории.
Тогда мы получили результаты экспериментов Лэмба [29] Уиллис Юджин Лэмб (1913–2008) — лауреат Нобелевской премии по физике 1955 года за открытие, связанное с тонкой структурой спектра водорода. — Примеч. ред. иностр. издания.
и Резерфорда [30] Роберт Резерфорд — американский ученый, чьи эксперименты 1947 года совместно с Уильямом Лэмбом продемонстрировали расщепление энергетических уровней в атоме водорода (Лэмбовский сдвиг) и внесли вклад в развитие квантовой электродинамики. — Примеч. ред. иностр. издания.
по сдвигам энергии электрона в атоме водорода. До тех пор грубые предсказания были достаточно хороши, но теперь появилось совершенно точное число: 1060 Мегагерц и ничего, кроме этого. И все сказали: проклятие, эта проблема должна быть решена! Известна теория, известны проблемы, но теперь появилась очень точная цифра.
Ганс Бете взял эту цифру и выполнил некоторые оценки, как избежать бесконечностей, вычитая эффект Лэмба из того эффекта с бесконечностями, и тут величины, которые имели тенденцию стремиться к бесконечности, вдруг перестали расти; возможно, они остановились в этом порядке по величине сдвига — он получил что-то около 1000 Мегагерц.
Я вспоминаю, как он пригласил кучу людей к себе на вечеринку в Корнелле, но его вызвали на какую-то консультацию. Он позвонил мне во время вечеринки и сообщил, что продолжит вычисления в поезде. Когда он вернулся, он прочитал лекцию по этой проблеме и показал, как процедура обрезания интегралов позволяет избежать бесконечностей, но слишком уж все было подогнано для этой цели и запутано. Бете сказал: «Хорошо бы кто-нибудь показал, как все это можно привести в порядок». Я подошел к нему после лекции и заявил: «О, это легко. Я могу это сделать». Я начал интересоваться этими идеями еще на последнем курсе Массачусетского технологического института. Я даже состряпал тогда ответ — неверный, конечно. Именно тогда Швингер, Томонага и я принялись за разработку способа, как технически включить эту процедуру в последовательный анализ, сохранив на всех этапах релятивистскую инвариантность. Томонага уже предложил, как это сделать, и тогда же Швингер разработал свой собственный путь.
Читать дальшеИнтервал:
Закладка: