Александр Петров - Гравитация От хрустальных сфер до кротовых нор
- Название:Гравитация От хрустальных сфер до кротовых нор
- Автор:
- Жанр:
- Издательство:«Век 2»
- Год:2013
- Город:Фрязино
- ISBN:978–5–85099–190–6
- Рейтинг:
- Избранное:Добавить в избранное
-
Отзывы:
-
Ваша оценка:
Александр Петров - Гравитация От хрустальных сфер до кротовых нор краткое содержание
Гравитация От хрустальных сфер до кротовых нор - читать онлайн бесплатно ознакомительный отрывок
Интервал:
Закладка:
В хронометрической теории есть также решения, описывающие объекты типа чёрных дыр. Однако вспомним, что в этой теории нет предельной скорости, возможно распространение взаимодействий со скоростью большей, чем скорость света и даже мгновенно. Если бы эта возможность была в ОТО, то само понятие горизонта событий потеряло бы смысл, поскольку появляется возможность покинуть объект, находясь и на горизонте событий, и под ним. При этом появляются противоречия, связанные с термодинамикой системы, такие как уменьшение энтропии. Сейчас не известны все решения для чёрных дыр в теории Хоржавы в силу её молодости, однако среди известных есть такие, которые позволяют избежать этих осложнений. Оказывается, что в чёрной дыре в рамках хронометрической теории может быть так называемый универсальный горизонт. Он находится под горизонтом событий («ближе» к сингулярности) и замечателен тем, что поверхности постоянного времени, находящиеся под ним, не пересекают его. Это означает, что сигнал даже бесконечной скорости (мгновенный) не может выйти из- под этого промежуточного горизонта. А для таких объектов вышеупомянутые противоречия снимаются.
На рис. 12.2 представлена так называемая диаграмма Пенроуза чёрной дыры Шварцшильда. Точки i - и i + представляют всю временную бесконечность прошлого и всю временную бесконечность будущего, точка i 0 объединяет всю пространственную бесконечность. Прямая В i + является горизонтом событий шварцшильдовой чёрной дыры — это
Рис. 12.2. Диаграмма хронометрической чёрной дыры
видно из расположения световых конусов. Действительно, квадрат В i + i 0 i - — это все внешнее пространство–время вне горизонта событий, в то время как треугольник i + Bi + — это пространство–время под горизонтом событий, откуда сигнал не может выйти во внешнюю область, и где ломаная линия — это сингулярность r = 0. На диаграмму шварцшильдовой дыры наложена диаграмма чёрной дыры хронометрической теории. Все кривые, соединяющие i 0 и i + , — это сечения постоянного поля хронона φ = const, то же самое, постоянного времени (одновременности). Жирная дуга — это тот самый универсальный горизонт ξ=ξ *, под ним, ближе к сингулярности, дуги i + i + , соединяющие концы ломаной линии — это тоже сечения постоянного времени (одновременности). Ясно, что если сигнал в хронометрической теории распространяется даже мгновенно, то есть вдоль сечений одновременности, то он не сможет пересечь универсальный горизонт и покинуть хронометрическую чёрную дыру.
Космология. В масштабах Вселенной теория Хоржавы также имеет шанс заявить о своей жизнеспособности. Обсудим космологические решения в новой теории. Они будут примерно такими же, как в ОТО, с той разницей, что вместо обычной гравитационной постоянной G будет фигурировать эффективная гравитационная постоянная G E . Теперь вспомним модифицированный закон Ньютона, о котором говорилось выше. Там появляется своя эффективная гравитационная постоянная, отличная от G, обозначим её G I . Сделаны оценки для разницы: |G I‑GE | ≤ 0,1. Нет запрета на то, что в будущем будет определена значимая величина для этой разницы, но так же возможно, что она будет исключена.
На основе ОТО разработана хорошо согласованная с наблюдениями теория космологических возмущений. Она позволяет, например, объяснить структуру, то есть распределение галактик и их скоплений в доступной наблюдениям области Вселенной. Тем не менее, если при повышении точности наблюдений будет обнаружена, скажем, анизотропия, не предсказанная ОТО, то это повод обратиться к теории Хоржавы. Теория Хоржавы настолько молода, что вряд ли её саму и выводы, сделанные на её основе, можно считать устоявшимися и всеми признанными. Несмотря на это, как теория в целом, так и выводы, представляются очень интригующими и важными.
Многомерные модели
Привет, Многомерие!
Виктор БохинюкНа протяжении всего последнего столетия различные теории гравитации конструировались, так или иначе, как самостоятельные теории, т. е. «снизу». В последние десятилетия ситуация изменилась: построение теорий гравитации стимулируется развитием фундаментальных теорий, различные модели гравитации являются их частью и «выкристаллизовываются» в границах этих теорий. То есть их создание идёт «сверху». Будучи претендентами на «теории всего», фундаментальные теории включают и гравитацию.
«Теория всего» должна работать при самых фантастических условиях, в том числе при планковских энергиях.
Тогда все взаимодействия выступают как единое. Поэтому построение таких теорий в определённой степени — экстраполяция. А переход от теории, работающей при самых общих условиях, к условиям нашего мира будет её приближением, которое называется низкоэнергитическим. Как минимум, наблюдательные эффекты в «приближённой теории всего» должны иметь место в наблюдаемом нами мире. «Гравитационная часть теории всего» в низкоэнергетическом пределе приобретает привычный для нас вид, и она должна выдержать все тесты, которые выдержала ОТО. Заметим, что некоторые варианты «теории всего» в низкоэнергетическом пределе в качестве гравитационной части содержат ОТО в точности.
Важное свойство фундаментальных теорий заключается в том, что, как правило, как на космологических масштабах, так и на масштабах микромира используется размерность пространства–времени больше, чем 4. Концепция многомерного пространства необходима, например, для теории суперструн, которая, по общему признанию, представляет собой наиболее перспективную теорию высоких энергий, объединяющую квантовую гравитацию и теорию так называемых калибровочных полей. Низкоэнергетические следствия этой теории требуют, например, (9+1) — мерного фундаментального пространства–времени (иногда (10+1) — мерного), в то время как другие размерности запрещены.
Но как же тогда быть, мы же ощущаем только 3 пространственных и одно временное измерение? На микромасштабах дополнительные измерения компактифицированы (как бы свёрнуты в «трубочки»), и это причина, по которой они и не должны восприниматься нами. Такое пространство обладает симметриями по дополнительным измерениям, которым отвечают законы сохранения для различных зарядов, точно так же, как симметриям пространства Минковского отвечают законы сохранения для энергетических характеристик.
Читать дальшеИнтервал:
Закладка: