Владимир Кирсанов - Научная революция XVII века
- Название:Научная революция XVII века
- Автор:
- Жанр:
- Издательство:Наука
- Год:1987
- Город:Москва
- ISBN:нет данных
- Рейтинг:
- Избранное:Добавить в избранное
-
Отзывы:
-
Ваша оценка:
Владимир Кирсанов - Научная революция XVII века краткое содержание
Книга посвящена формированию основных представлений классической науки в XVII в., процессу, который получил название научной революции. Основное место отведено физико-математическим наукам, в развитии которых ярче всего отразились основные черты научной революции. Прослеживаются главные линии этого процесса, связанные в первую очередь с именами Кеплера, Галилея, Декарта, Гюйгенса и Ньютона. Большое внимание уделено первоисточникам — многие отрывки из научных трудов и переписки создателей новой науки публикуются на русском языке впервые. Учтены результаты позднейших исследований по истории науки, которые позволяют по-новому взглянуть на многие события того времени.
Научная революция XVII века - читать онлайн бесплатно полную версию (весь текст целиком)
Интервал:
Закладка:
Здесь у Буридана, как и ранее у Орема, импетус приобретает характерные черты современного понятия силы: импетус (хотя и не постоянный) является причиной ускорения тела. Но что самое важное в этом отрывке — это то, что анализ Буридана «вводит в рассмотрение ускорения необходимую разрывность, факт, на который не обратили внимания историки и который является ключом к средневековой теории импетуса, а также к пониманию его развития много позже» {5, с. 37}.
Обсуждая роль дискретности в физических представлениях Средневековья, Дрейк подчеркивает, что для них была характерна существенная разница между физическим и математическим понятиями мгновения. Лучшим примером этому является проблема «первого мгновения» движения, т. е. можно ли считать первое мгновение движения идентичным с последним мгновением покоя? Если да, то такое заключение содержит противоречие, ибо в таком случае тело будет одновременно находиться и в состоянии покоя, и в состоянии движения. Если мгновение мыслится математически, то задача не имеет смысла, однако физическое мгновение всегда имеет некоторую длительность, как бы мала она ни была, поэтому проблема решается просто — легко отделить последнее мгновение, когда тело еще находится в покое, от первого мгновения, когда тело уже движется. С таким представлением, замечает при этом Дрейк, вполне согласуется молчаливое предположение средневековых физиков, что физическое время имеет квазиатомную структуру и что физические моменты делимы только потенциально {5, с. 31}.
Возвращаясь к задаче о падении тела, теперь можно показать, что Буридан решал ее в чисто аристотелевском стиле. Действительно, если бы движение вниз зависело только от веса, то, как и предполагал Аристотель, оно совершалось бы с неизменной скоростью, т. е. было бы равномерным. Таковым, согласно Буридану, является движение вниз в начальный момент движения, когда импетус еще не оказывает на движение (и скорость) никакого воздействия. В дальнейшем накопление импетуса и приращение скорости идет последовательными квантовыми скачками, а не совершается непрерывно. Графиком скорости такого ускоренного движения была ступенчатая функция, а не треугольник, и, возможно, именно вследствие различия между физическими (т. е. реальными) явлениями и явлениями, мыслимыми в абстракции, представители Парижской школы не применяли найденные ими треугольные конфигурации к анализу реального падения. (Отметим, что, когда Орем обсуждает действительное движение, он использует ступенчатые функции, как в случае движения с бесконечно увеличивающейся скоростью или в случае движения, длящегося бесконечно.)
Первым, кто использовал треугольную конфигурацию для анализа реального падения, был Галилей.
2
Галилео Галилей родился в Пизе 15 февраля 1564 г. в знатной, но обедневшей семье флорентийца Винченцо Галилея. Винченцо был высокообразованным человеком, профессиональным музыкантом, а также торговцем. Некоторые его сочинения по теории музыки пользовались известностью и после его смерти, а его обширные познания в языках и математике были общеизвестны. Галилей унаследовал от отца вместе с любовью к музыке и некоторые черты характера, в том числе независимость и агрессивность [11] Интересно отметить, что два главных сочинения Галилея-сына: «Диалог о двух системах мира» и «Беседы и математические доказательства» — называются аналогично сочинениями Галилея-отца, озаглавленными: «Диалог об античной и современной музыке» и «Беседы о труде мессера Джозеффо Царлино»; все они построены в форме диалога.
.
Галилей получил начальное образование дома под руководством некоего Якопо Боргини, но затем отец отдал его в иезуитскую школу знаменитого монастыря св. Марии в Валломброзо (к этому времени семья переехала во Флоренцию). Галилей отнесся к своему пребыванию в монастыре гораздо серьезнее, чем того желал Винченцо, и в 1578 г. вступил в орден как новиций. Однако отец Галилея вовсе не желал видеть своего сына монахом и забрал его домой под предлогом того, что тот нуждается в лечении глаз. Некоторое время Винченцо сам занимается с сыном, а впоследствии домашними учителями Галилея вновь становятся монахи из монастыря Валломброза.

В 1581 г. Галилей поступил на факультет искусств Пизанского университета, чтобы стать врачом. Его семья оставалась жить во Флоренции, в то время как он сам обосновался у сестры своей матери в Пизе. В университете он слушал лекции Франческо Буонамико (по астрономии) и Джироламо Боро (по физике), которые строго придерживались воззрений Аристотеля, а также лекции Андреа Чезальпино по медицине. Математики в университете не читали — кафедра математики оставалась вакантной в течение почти всего времени пребывания Галилея в университете. Но случилось так, что к медицине Галилей особого интереса не выказал, зато в нем обнаружился неподдельный интерес к математике. Он сам нашел себе учителя: во время летних каникул 1583 г. он попросил Остилио Риччи, близкого друга своего отца и учителя математики при Тосканском дворе, помочь ему в овладении этой наукой. Риччи согласился, и они приступили к занятиям втайне от Винченцо. Страсть, с которой Галилей занимался математикой, заставила Риччи обратиться к его отцу и убедить того разрешить продолжать занятия. А у Риччи было чему поучиться: ученик Николо Тартальи, он передал Галилею свою любовь к произведениям греческих математиков, и в первую очередь к Архимеду, который в глазах Тартальи и его учеников был идеалом, соединяющим в себе выдающиеся способности теоретика и экспериментатора. Его преподавание математики включало занятия военной и строительной механикой, астрономией, физикой и другими естественными науками. Вскоре Галилей настолько освоился с новой наукой, что уже сам мог вести самостоятельные исследования.
В первый год своего пребывания в Пизанском университете (1582) Галилей сделал и свое первое открытие: он обнаружил изохронность колебаний маятника, т. е. что время колебаний маятника всегда одинаково и не зависит от амплитуды. Согласно легенде он пришел к этой мысли, наблюдая за качаниями тяжелой люстры в кафедральном соборе (люстру отводили в сторону, чтобы зажечь свечи, а когда отпускали, она продолжала качаться). Галилей заметил, что период колебаний сохраняется, несмотря на то что размах качаний уменьшается, причем время он отсчитывал по своему собственному пульсу. В действительности люстры, о которой идет речь, не существовало в соборе до 1587 г. Более того, «нынешняя люстра, хотя сейчас она электрифицирована, первоначально была устроена таким образом, что ее не нужно было отводить в сторону, чтобы зажечь свечи, ибо это привело бы к тому, что при обратном движении пламя бы погасло» [6, с. 63]. Верна эта легенда или нет, не так уж важно, важно то, что Галилей первым в Европе открыл это явление и эксперименты с маятником сыграли важную роль в его исследованиях законов падения тел. (А. Мюллер в своем исследовании о Галилее утверждает, что явление изохронизма маятника было известно до Галилея на арабском Востоке, в частности оно было знакомо Ибн-Юнису (950—1009). Но сочинения Ибн-Юниса не были тогда известны в Европе, и Галилей об этом знать не мог [7].)
Читать дальшеИнтервал:
Закладка: