Владимир Кирсанов - Научная революция XVII века
- Название:Научная революция XVII века
- Автор:
- Жанр:
- Издательство:Наука
- Год:1987
- Город:Москва
- ISBN:нет данных
- Рейтинг:
- Избранное:Добавить в избранное
-
Отзывы:
-
Ваша оценка:
Владимир Кирсанов - Научная революция XVII века краткое содержание
Книга посвящена формированию основных представлений классической науки в XVII в., процессу, который получил название научной революции. Основное место отведено физико-математическим наукам, в развитии которых ярче всего отразились основные черты научной революции. Прослеживаются главные линии этого процесса, связанные в первую очередь с именами Кеплера, Галилея, Декарта, Гюйгенса и Ньютона. Большое внимание уделено первоисточникам — многие отрывки из научных трудов и переписки создателей новой науки публикуются на русском языке впервые. Учтены результаты позднейших исследований по истории науки, которые позволяют по-новому взглянуть на многие события того времени.
Научная революция XVII века - читать онлайн бесплатно полную версию (весь текст целиком)
Интервал:
Закладка:
Процесс Кремонини показателен для характеристики политической ситуации в Венецианской республике, где во время пребывания Галилея развернулась борьба против засилья римской курии. Эту борьбу, которая привела к изгнанию иезуитов из Республики, возглавлял Паоло Сарпи, бывший советником правительства по теологическим вопросам. Сарпи был не только искушенным политиком и теологом, но и высокообразованным математиком, в лице которого Галилей также нашел искреннего друга.
В Венеции Галилей встретил Марину Гамба, которая стала вскоре его женой (хотя официальный обряд бракосочетания так и не имел места). Их совместная жизнь длилась более 10 лет. Гамба родила Галилею двух дочерей, Вирджинию (1600) и Ливию (1601), и сына Винченцо (1606). Впоследствии, по переезде Галилея во Флоренцию, Гамба вышла замуж за некоего Джованни Бартолуцци, к которому Галилей относился с неизменной симпатией. Наиболее тесные и трогательные отношения связывали Галилея с его старшей дочерью, Вирджинией, чья безрадостная жизнь (будучи незаконнорожденной, она была вынуждена тринадцати лет постричься в монахини) была озарена светом нежной привязанности к отцу, а для Галилея в пору тяжелых испытаний и преследований инквизиции она оставалась единственным утешением. Вирджиния приняла в монашестве имя Марии Челесты, Ливия — Арканджелы; Винченцо же был признан законным сыном Галилея, что дало ему возможность вести светскую жизнь: он окончил Пизанский университет, стал юристом и благополучно женился. Сохранившиеся письма Марии Челесты к отцу рисуют трогательную картину их взаимоотношений (см. об этом в [13, гл. IX]).
В течение жизни в Падуе Галилей много и плодотворно занимался механикой, им был изобретен пропорциональный циркуль, написаны два руководства по фортификации и несколько трактатов, из которых сохранился лишь один. В настоящее время он известен как «Механика», причем существуют три его редакции — 1593, 1594 и 1600 гг. Трактат посвящен в основном теории простых механизмов; в частности, важной для дальнейшего развития науки является высказанная в нем идея о связи между статикой и динамикой, а именно что равновесие на наклонной плоскости может быть нарушено действием сколь угодно малой силы.
Но, как уже говорилось, наиболее существенным достижением Галилея в механике в течение падуанского периода было открытие закона падения и параболической траектории снаряда.
3
Ошибки механики пизанского периода определялись среди прочего тем, что Галилей не считал падение ускоренным движением и не рассматривал явление ускорения. Но первые годы XVII столетия застают его в Падуе над разработкой именно этих проблем, связанных с ускорением падающего тела. В письме к Паоло Сарпи, относящемся к 1604 г., содержится уже правильный закон падения, выражающий зависимость пути, пройденного падающим телом, от квадрата времени падения. Правда, в этом же письме Галилей указывает, что вывод, сделанный им, основывается на предпосылке, что скорость пропорциональна пройденному пути, что, как мы знаем сегодня, является неправильным. Письмо к Сарпи вместе с тем фактом, что формулировка закона появилась лишь спустя почти 30 лет в «Диалоге», вызвало у исследователей творчества Галилея недоумение, которое пытались прояснить с помощью разных гипотез.
Некоторые историки полагали, что Галилей пришел к закону падения, используя приемы теоретиков Парижской и Оксфордской школ. Действительно, средневековые авторы имели в своем арсенале мертонское правило, которое, как мы помним, можно интерпретировать таким образом, что равноускоренное движение эквивалентно равномерному движению со средней скоростью (при этом равноускоренное движение мыслится начинающимся из состояния покоя, а эквивалентность понимается как равенство путей, пройденных за одинаковое время). Мертонское правило означает тот факт, что в рассматриваемом равноускоренном движении в первую половину времени движения проходится четверть всего пути, т. е. отношение путей, пройденных в первую и вторую половину времени, равно 1:3. Такое соотношение было доказано Оремом, который затем продолжил его до 1, 3, 5, 7, ... и т. д. для равных времен. Все это дало основание Эдварду Гранту утверждать:
«Геометрическое доказательство Орема теоремы о средней скорости и многочисленные ее арифметические доказательства были широко распространены в Европе в течение XIV и XV столетий и были особенно популярны в Италии. Весьма вероятно, что благодаря печатным текстам конца XV и начала XVI вв. они стали хорошо знакомы Галилею. Он сделал теорему о средней скорости первым предложением Третьего Дня в своих „Беседах о двух новых науках", где она служит фундаментом новой науки о движении» [14, с. 246].
Однако оксфордские и парижские теоретики пришли к мертонскому правилу, исходя из представления, что равноускоренное движение является таким движением, в котором скорость получает равные приращения в равные промежутки времени. С другой стороны, как следует из письма к Сарпи, Галилей ошибочно полагал, что скорость пропорциональна пути, а не времени. Поэтому совершенно справедливо замечает Дрейк: «Если предположить, что средневековые авторы были источником работы Галилея, то как объяснить, что он принял и разработал их ранние результаты, в то же самое время отвергая самую основу, из которой они были получены. Точно так же, если он позднее познакомился с сочинениями средневековых авторов, то почему он так и не использовал мертонское правило для доказательства своего предложения ни в своих заметках, ни в своей книге?» [15, с. 85]. Более того, как указывалось ранее, Орем никогда не связывал равноускоренное движение со свободным падением, и ни один средневековый автор не утверждал, что пройденные отрезки пропорциональны квадратам времен, что легко выводимо из прогрессии Орема: 1, 3, 5, 7,...
Другой гипотезой относительно реконструкции создания закона падения Галилеем является предположение, что он пришел к нему чисто математическим путем аналогично тому, как это впоследствии сделал Гюйгенс. Действительно, если принять, что в равноускоренном движении скорость увеличивается в равные промежутки времени на равные величины, то такое правило должно сохраняться для любых равных промежутков времени. А это означает, что в числовой последовательности, которая отображает величину пройденных отрезков пути, отношение первого члена ко второму должно быть таким же, как отношение суммы первых двух членов к сумме следующих двух членов или же как отношение суммы первых трех членов к сумме следующих трех членов и т. д. Другими словами, задача сводится к отысканию такой арифметической прогрессии, для которой отношение предыдущего члена к последующему равняется отношению суммы любого числа предыдущих членов к сумме такого же числа последующих членов. Единственной последовательностью целых чисел, удовлетворяющей этому замечательному свойству, является последовательность 1, 3, 5, 7,...
Читать дальшеИнтервал:
Закладка: