Владимир Кирсанов - Научная революция XVII века
- Название:Научная революция XVII века
- Автор:
- Жанр:
- Издательство:Наука
- Год:1987
- Город:Москва
- ISBN:нет данных
- Рейтинг:
- Избранное:Добавить в избранное
-
Отзывы:
-
Ваша оценка:
Владимир Кирсанов - Научная революция XVII века краткое содержание
Книга посвящена формированию основных представлений классической науки в XVII в., процессу, который получил название научной революции. Основное место отведено физико-математическим наукам, в развитии которых ярче всего отразились основные черты научной революции. Прослеживаются главные линии этого процесса, связанные в первую очередь с именами Кеплера, Галилея, Декарта, Гюйгенса и Ньютона. Большое внимание уделено первоисточникам — многие отрывки из научных трудов и переписки создателей новой науки публикуются на русском языке впервые. Учтены результаты позднейших исследований по истории науки, которые позволяют по-новому взглянуть на многие события того времени.
Научная революция XVII века - читать онлайн бесплатно полную версию (весь текст целиком)
Интервал:
Закладка:
Наконец, Галилей мог прийти к своему закону чисто случайно в процессе опытов с движением шарика по наклонной плоскости, которые, согласно его книге, он многократно производил.
В действительности, как следует из находки Стиллмана Дрейка, ни одно из этих предположений не оказалось верным: обнаруженный им в Национальной библиотеке Флоренции документ (обозначенный как f 152 тома 72 галилеевских рукописей) свидетельствует, что Галилей при выводе своего закона не ссылался и не использовал ни мертонское правило, ни рассуждения арифметического толка [15, с. 85—92].
В найденном документе, который датируется не позднее октября 1604 г. и представляет лист с заметками Галилея, рассматривается задача об ускоренном движении, в котором величина скорости по прошествии выбранного промежутка времени увеличивается на единицу. В соответствии со средневековым представлением об ускоренном движении Галилей вначале полагает, что нарастание скорости идет не непрерывно, а скачками и по прошествии одной мили скорость возрастает на один градус. Он записывает условие: «4 мили с 10 градусами скорости за 4 часа».
Это означает, что первая миля проходится с одним градусом скорости, вторая — с двумя, третья — с тремя и четвертая — с четырьмя градусами скорости. Отсюда необычная для нас запись характеристики скорости: 1+2+3+4=10 градусов, которая в зависимости от условий задачи может соответствовать различным ускорениям и не представляет собой в нашем сегодняшнем понимании значения скорости по прошествии 4 миль. Время, указанное в условии (4 часа), выбирается им произвольно.
Затем Галилей как бы ставит вопрос: за какое время будет пройдена дистанция в 9 миль с 15 градусами скорости? Сперва он пытается решить задачу с помощью обычных числовых пропорций, но это ему не удается, и тогда он выбирает совершенно иной подход к решению проблемы. Он рисует чертеж, иллюстрирующий процесс падения. Точки А, В и С представляют расстояния, пройденные по вертикальной прямой при падении из состояния покоя, причем АВ предполагается равным 4, а АС — 9. Эти два числа, выбранные Галилеем произвольно, представляют собой квадраты, и не удивительно, что в попытках сопоставить двум числам, каждое из которых является квадратом, третье Галилею приходит на ум число, которое является средним пропорциональным в соответствующей пропорции. В данном случае средним пропорциональным будет 6 (4:6 = 6:9, тогда 6 2= 4x9 и 6 = √(4x9). Если крайние члены пропорции есть квадраты, тогда среднее пропорциональное выразится целым числом. Этот факт, по-видимому, и имел в виду Галилей, когда числам 4 и 9 он поставил в соответствие число 6). И он помещает точку D между В и С так, что AD равно 6. Ему кажется, что такой выбор может решить проблему и 9 миль с 15 градусами скорости будут пройдены за 6 часов.
В данном случае выбор двух квадратов в качестве чисел условия можно считать счастливым совпадением, но следует отметить, что это было в обычае древних и средневековых математиков — практически все задачи решались с помощью числовых примеров, и очень часто в качестве значений выбирались первые числа натурального ряда или их квадраты. Как бы то ни было, Галилею удалось получить правильную зависимость пути от времени для равноускоренного движения: у него получалось, что скорости относятся как 10:15, т. е. как 2:3, в таком же отношении находятся и времена, отсчитываемые с начала падения, — 4:6 = 2:3, откуда следует, что пути относятся как 4:9 = 22:32, т. е. как квадраты времен.
Дрейк приводит по поводу этого результата Галилея слова Джойса: гений не совершает ошибок, его ошибки являются вратами в открытие. И действительно, результат Галилея парадоксален: исходя из того что скорость пропорциональна пути (предположения явно ошибочного), он приходит к заключению (совершенно истинному), что путь пропорционален квадрату времени! Парадокс объясняется замечанием самого Галилея, что вначале он не видел разницы в том, пропорциональна ли скорость пути или скорости, потому что к началу XVII в. еще не было в точности известно, как должна измеряться скорость, и Галилей делал по этому поводу разные предположения. Так, в рассматриваемом документе он оперирует с величиной, которую называет по-латыни gradus velocitatis (то, что мы сегодня обозначили бы через у), а в письме к Сарпи он использует итальянский термин velocita, предполагая, что это v 2в нашем сегодняшнем обозначении.
В письме к Сарпи Галилей подчеркивал, что ему известен квадратичный закон зависимости пути от времени, но он не знает неоспоримого принципа, из которого он мог бы этот закон вывести, хотя в промежуток времени, прошедший с момента написания рассматриваемого документа и до письма к Сарпи, Галилей определенно более уверен в правильности своего результата.
Но и с самого начала он видит в соотношении, получившемся благодаря совпадению, общую закономерность — он не ограничивается взятыми наугад двумя значениями пути, а продолжает вниз вертикальную ось и вычисляет, исходя из свойств пропорций, что точки, соответствующие увеличивающимся значениям скорости (а следовательно, и времени, так как в модели Галилея t 1: t 2= v 1: v 2), должны лежать на параболе, имеющей осью начерченную им вертикаль. Таким образом, документ, хранящийся в Национальной библиотеке Флоренции, доказывает, что квадратичная зависимость между временем и путем равноускоренного движения была установлена Галилеем не позднее 1604 г.
Вопрос о том, как и когда Галилей пришел к представлению о параболической траектории движения снаряда, тесно связан с вопросом, какие эксперименты по падению тел Галилей в действительности проводил. Многие исследователи высказывали по этому поводу различные мнения, которые можно суммировать следующим образом: несомненно, что некоторые эксперименты (с маятником, движением на наклонной плоскости) Галилей проводил, что же касается опытов с вертикальным падением тела, то их существование сомнительно; при этом важно отметить, что в его сочинениях нигде не приводится точных экспериментальных данных, а величины, которые упоминаются, например, в «Беседах», являются результатом мысленных экспериментов, не имевших места в действительности.
Особенное недоумение вызывали до самого последнего времени обстоятельства открытия параболической траектории движения снаряда. С одной стороны, когда ученик Галилея Бонавентура Кавальери опубликовал в 1632 г. (в год выхода «Диалога») в своей книге «Зажигательное зеркало» правильный закон движения снаряда, это вызвало у Галилея взрыв возмущения. Он обвинил Кавальери в плагиате, и конфликт был улажен после того, как Кавальери принес свои извинения и признал приоритет Галилея. С другой стороны, во Втором дне «Диалога» он утверждает, что линия, которую описывает свободно падающее тело (брошенное вниз с башни на вращающейся вокруг своего центра Земле), будет полуокружностью, заканчивающейся в центре Земли. Он приходит к такому выводу на основе принципа независимости движений и представления о круговой инерции [16, I, с. 264].
Читать дальшеИнтервал:
Закладка: