Стивен Вайнберг - Объясняя мир. Истоки современной науки

Тут можно читать онлайн Стивен Вайнберг - Объясняя мир. Истоки современной науки - бесплатно ознакомительный отрывок. Жанр: Прочая научная литература, издательство Альпина нон-фикшн, год 2015. Здесь Вы можете читать ознакомительный отрывок из книги онлайн без регистрации и SMS на сайте лучшей интернет библиотеки ЛибКинг или прочесть краткое содержание (суть), предисловие и аннотацию. Так же сможете купить и скачать торрент в электронном формате fb2, найти и слушать аудиокнигу на русском языке или узнать сколько частей в серии и всего страниц в публикации. Читателям доступно смотреть обложку, картинки, описание и отзывы (комментарии) о произведении.

Стивен Вайнберг - Объясняя мир. Истоки современной науки краткое содержание

Объясняя мир. Истоки современной науки - описание и краткое содержание, автор Стивен Вайнберг, читайте бесплатно онлайн на сайте электронной библиотеки LibKing.Ru

Книга одного из самых известных ученых современности, нобелевского лауреата по физике, доктора философии Стивена Вайнберга – захватывающая и энциклопедически полная история науки. Это фундаментальный труд о том, как рождались и развивались современные научные знания, двигаясь от простого коллекционирования фактов к точным методам познания окружающего мира. Один из самых известных мыслителей сегодняшнего дня проведет нас по интереснейшему пути – от древних греков до нашей эры, через развитие науки в арабском и европейском мире в Средние века, к научной революции XVI–XVII веков и далее к Ньютону, Эйнштейну, стандартной модели, гравитации и теории струн. Эта книга для всех, кому интересна история, современное состояние науки и те пути, по которым она будет развиваться в будущем.

Объясняя мир. Истоки современной науки - читать онлайн бесплатно ознакомительный отрывок

Объясняя мир. Истоки современной науки - читать книгу онлайн бесплатно (ознакомительный отрывок), автор Стивен Вайнберг
Тёмная тема
Сбросить

Интервал:

Закладка:

Сделать

Другая причина того, что эти сочетания нот благозвучны, заключается в обертонах. Чтобы N 1-й обертон струны 1 имел ровно ту же частоту, что и N 2-й обертон струны 2, должно выполняться равенство vN 1/2 L 1= vN 2/2 L 2, и таким образом:

картинка 17

И вновь отношение длин двух струн выражается рациональным числом, хотя и по иной причине. Но если это отношение окажется равно какому-либо нерациональному числу, например, π или квадратному корню из 2, то обертоны двух струн никогда не совпадут точно, хотя частоты более высоких обертонов могут сходиться как угодно близко. Звук, который при этом получается, ужасен.

4. Теорема Пифагора

Так называемая теорема Пифагора – самая знаменитая во всей планиметрии. Хотя ее доказательство приписывают ученикам и последователям Пифагора, например, Архиту Тарентскому, в точности история ее создания неизвестна. Здесь я приведу простейшее доказательство, основанное на понятии пропорциональности, широко применявшемся древнегреческими математиками.

Рассмотрим треугольник с вершинами A, B и P , у которого угол при вершине P является прямым. Теорема утверждает, что площадь квадрата, сторона которого равна AB (гипотенуза треугольника), равняется сумме площадей квадратов, стороны которых равны двум другим сторонам того же треугольника, катетам AP и BP . Говоря языком современной алгебры, рассматривая AB, AP и BP как численные величины, равные длинам указанных сторон, должно быть справедливо равенство:

AB ² = AP ² + BP ².

Чтобы доказать теорему, следует провести перпендикуляр к гипотенузе AB из вершины P . Обозначим точку его пересечения с гипотенузой C (см. рис. 2). Таким образом мы поделим исходный треугольник ABP на два меньших прямоугольных треугольника APC и BPC . Легко видеть, что оба меньших треугольника подобны исходному прямоугольному треугольнику, то есть все углы в них те же самые, что и в большом. Если мы обозначим углы при вершинах A и B α (альфа) и β (бета), то у треугольника ABP будут углы α, β и 90°, и значит, α + β + 90° = 180°. В треугольнике APC два угла равны α и 90°, значит, третий угол равняется β. Аналогично в треугольнике BPC два угла равны β и 90°, следовательно, третий угол равен α.

Так как все три треугольника взаимно подобны, их соответствующие стороны пропорциональны. Это означает, что длина катета AC относится к длине гипотенузы AP треугольника ACP так же, как длина катета AP к длине гипотенузы AB в исходном треугольнике ABP . Соответственно, BC относится к BP в той же пропорции, что и BP к AB . Мы можем выразить это в более привычной алгебраической форме, связав длины сторон пропорцией:

Отсюда очевидно следует что AP ² AC AB а BP ² BC AB Складывая два - фото 18

Отсюда очевидно следует, что AP ² = AC × AB , а BP ² = BC × AB . Складывая два этих уравнения вместе, получаем:

AP ² + BP ² = ( AC + BC ) × AB.

Но AC + BC = AB , что и требовалось доказать.

Рис 2 Доказательство теоремы ПифагораСогласно теореме сумма площадей - фото 19

Рис. 2. Доказательство теоремы Пифагора.Согласно теореме, сумма площадей квадратов, стороны которых равны катетам AP и BP , равняется площади квадрата, стороной которого является гипотенуза AB . Для доказательства теоремы из точки P в точку C проводится перпендикуляр к гипотенузе AB .

5. Иррациональные числа

Математикам Древней Греции были известны лишь рациональные числа. К ним относятся все целые числа, например, 1, 2, 3 и т. д. или целочисленные дроби – 1/2, 2/3 и т. п. Если отношение длин двух отрезков выражалось целочисленной дробью, древнегреческий математик считал, что они «соизмеримы». К примеру, если они находятся в отношении 3/5, это означает, что если один из этих отрезков отложить три раза, а другой пять раз, то получится два отрезка одинаковой длины. Представьте себе потрясение античных математиков, выяснивших, что не все отрезки являются соизмеримыми. Например, в прямоугольном равнобедренном треугольнике гипотенуза несоизмерима ни с одним из двух одинаковых катетов. В понятиях современной математики, поскольку, согласно теореме Пифагора квадрат гипотенузы такого треугольника равен удвоенному квадрату длины любого из катетов, длина гипотенузы равняется произведению длины любого из катетов на квадратный корень из 2. Это означает, что квадратный корень из 2 не является рациональным числом. Доказательство этого факта Евклидом в книге X «Элементов» базируется на первоначальном предположении обратного, что существует рациональное число, квадрат которого равен 2, после чего Евклид опровергает это предположение.

Допустим, что есть рациональное число, выраженное дробью p / q (где p и q – целые числа), чей квадрат равен 2:

Объясняя мир Истоки современной науки - изображение 20

В таком случае будет бесконечное количество таких пар чисел, которые можно получить, умножая p и q на любой натуральный множитель, но предположим, что целые числа p и q – наименьшие целые, для которых верно выражение ( p / q ) 2 = 2. Из уравнения выше следует, что

p ² = 2q ².

Отсюда очевидно, что p ² – четное число, но так как произведение двух любых нечетных чисел есть нечетное число, то p должно быть только четным. То есть мы можем записать равенство p = 2 p ', где p ' – целое число. Но тогда

q ² = 2p

и, повторяя предыдущую цепь рассуждений, находим, что число q также четное и может быть выражено равенством q = 2 q ', где q ' – целое число. Но тогда p / q = p '/ q ', и значит,

Объясняя мир Истоки современной науки - изображение 21

где p ' и q ' – целые числа, которые в два раза меньше p и q соответственно. А это противоречит исходному предположению, что p и q – наименьшие целые числа, для которых равенство ( p / q )² = 2 справедливо. Мы имеем противоречие, и, следовательно, такие числа не могут существовать.

Теорема явным образом обобщается: любое число, например, 3, 5, 6 и т. д., которое само не является квадратом целого числа, не может быть квадратом рационального числа. Например, если 3 = ( p / q )², где p и q – наименьшие целые числа, для которых это равенство справедливо, то p ² = 3 q ², но это невозможно, если только нет такого целого p ', для которого p = 3 p ', но тогда q ² = 3 p '², и q = 3 q ' для некоего целочисленного q ', и, значит, 3 =( p '/ q ')², что противоречит предположению о том, что не существует целых чисел меньше p и q , для которых p 2 = 3 q 2. Поэтому квадратные корни чисел 3, 5, 6, … иррациональны все.

Читать дальше
Тёмная тема
Сбросить

Интервал:

Закладка:

Сделать


Стивен Вайнберг читать все книги автора по порядку

Стивен Вайнберг - все книги автора в одном месте читать по порядку полные версии на сайте онлайн библиотеки LibKing.




Объясняя мир. Истоки современной науки отзывы


Отзывы читателей о книге Объясняя мир. Истоки современной науки, автор: Стивен Вайнберг. Читайте комментарии и мнения людей о произведении.


Понравилась книга? Поделитесь впечатлениями - оставьте Ваш отзыв или расскажите друзьям

Напишите свой комментарий
x