Стивен Вайнберг - Объясняя мир. Истоки современной науки

Тут можно читать онлайн Стивен Вайнберг - Объясняя мир. Истоки современной науки - бесплатно ознакомительный отрывок. Жанр: Прочая научная литература, издательство Альпина нон-фикшн, год 2015. Здесь Вы можете читать ознакомительный отрывок из книги онлайн без регистрации и SMS на сайте лучшей интернет библиотеки ЛибКинг или прочесть краткое содержание (суть), предисловие и аннотацию. Так же сможете купить и скачать торрент в электронном формате fb2, найти и слушать аудиокнигу на русском языке или узнать сколько частей в серии и всего страниц в публикации. Читателям доступно смотреть обложку, картинки, описание и отзывы (комментарии) о произведении.

Стивен Вайнберг - Объясняя мир. Истоки современной науки краткое содержание

Объясняя мир. Истоки современной науки - описание и краткое содержание, автор Стивен Вайнберг, читайте бесплатно онлайн на сайте электронной библиотеки LibKing.Ru

Книга одного из самых известных ученых современности, нобелевского лауреата по физике, доктора философии Стивена Вайнберга – захватывающая и энциклопедически полная история науки. Это фундаментальный труд о том, как рождались и развивались современные научные знания, двигаясь от простого коллекционирования фактов к точным методам познания окружающего мира. Один из самых известных мыслителей сегодняшнего дня проведет нас по интереснейшему пути – от древних греков до нашей эры, через развитие науки в арабском и европейском мире в Средние века, к научной революции XVI–XVII веков и далее к Ньютону, Эйнштейну, стандартной модели, гравитации и теории струн. Эта книга для всех, кому интересна история, современное состояние науки и те пути, по которым она будет развиваться в будущем.

Объясняя мир. Истоки современной науки - читать онлайн бесплатно ознакомительный отрывок

Объясняя мир. Истоки современной науки - читать книгу онлайн бесплатно (ознакомительный отрывок), автор Стивен Вайнберг
Тёмная тема
Сбросить

Интервал:

Закладка:

Сделать

В этом анализе вода не играет какую-либо определяющую роль. Если то же самое тело подвешивать в какой-нибудь другой жидкости, то соотношение истинного веса и уменьшения веса тела в этой жидкости будет также равняться соотношению плотностей самого тела и этой жидкости. Часто этот принцип используется так: тело известного веса и объема погружают в различные жидкости для того, чтобы измерить плотности этих жидкостей.

10. Площадь круга

Чтобы рассчитать площадь круга, Архимед представлял себе многоугольник с большим количеством сторон, описанный вокруг круга. Для простоты рассмотрим правильный многоугольник, у которого все стороны и углы равны. Площадь такого многоугольника есть сумма площадей всех прямоугольных треугольников, которые образуются, если провести лучи из центра многоугольника к каждой из его вершин и к середине каждой из его сторон (см. рис. 4, здесь для примера в качестве многоугольника взят правильный восьмиугольник). Площадь прямоугольного треугольника равна половине произведения обоих его катетов, поскольку два таких треугольника можно сложить вместе гипотенузами, и тогда они образуют прямоугольник, площадь которого равна произведению катетов исходного треугольника. В нашем случае это означает, что площадь каждого треугольника равна половине произведения отрезка r от центра до середины каждой из сторон многоугольника (то есть радиусу круга) и отрезка s от точки на середине стороны до вершины, который, конечно, равен половине стороны многоугольника. Просуммировав площади всех этих треугольников, мы обнаружим, что площадь всего многоугольника равна половине произведения r на полный периметр всего многоугольника. Если мы будем увеличивать количество сторон в многоугольнике до бесконечности, то его площадь будет все точнее совпадать с площадью вписанного круга, а его периметр – с длиной окружности круга. Поэтому площадь круга равна половине произведения его радиуса на длину окружности.

Сегодня мы знаем число π = 3,14159… такое, что длина окружности радиусом r будет равняться 2 πr . Тогда площадь круга равна

Объясняя мир Истоки современной науки - изображение 32 Рис 4 Вычисление площади кругаЧтобы рассчитать площадь круга используется - фото 33

Рис. 4. Вычисление площади круга.Чтобы рассчитать площадь круга, используется описанный многоугольник. На этом рисунке у многоугольника восемь сторон, и его площадь уже приблизительно равна площади круга. Чем больше будет сторон у многоугольника, тем точнее его площадь будет совпадать с площадью круга.

Те же самые выводы справедливы и если мы будем вписывать многоугольник внутрь круга, а не описывать его снаружи, как на рис. 4. Поскольку окружность всегда находится между вписанным и описанным многоугольником, расчет площадей обоих этих многоугольников позволил Архимеду найти верхние и нижние границы для отношения длины окружности к ее радиусу, то есть для величины 2 π .

11. Размеры Солнца и Луны и расстояния до них

Аристарх использовал четыре наблюдательных факта, чтобы определить расстояния от Земли до Солнца и Луны, а также диаметры Солнца и Луны. Все полученные результаты он выразил в единицах диаметра Земли. Рассмотрим каждое из выполненных им наблюдений по очереди и посмотрим, что можно узнать, основываясь на них. Далее расстояния между Землей и Солнцем и Землей и Луной будут обозначаться соответственно и , а диаметры Солнца, Луны и Земли – Dс, Dл и . Предполагая, что диаметры этих тел ничтожно малы по сравнению с расстояниями между ними, примем, что в рассуждениях о расстояниях между Землей, Луной и Солнцем не обязательно брать во внимание расположение на Земле точек, из которых выполняются наблюдения.

Наблюдение 1

Когда Луна в фазе первой или последней четверти, угол между направлениями на Луну и на Солнце составляет 87°.

Если в этот момент смотреть с Луны, угол между направлениями на Солнце и на Землю должен составлять точно 90° (см. рис. 5а), поэтому треугольник, образованный отрезками Луна – Солнце, Луна – Земля и Земля – Солнце, является прямоугольным, в котором отрезок Земля – Солнце есть гипотенуза. Отношение катета, прилежащего к углу θ (тета) в прямоугольном треугольнике, к его гипотенузе – тригонометрическая функция косинус угла θ, которая обозначается cos θ, и ее значение мы можем взять из таблицы или рассчитать на калькуляторе с тригонометрическими функциями. Итак,

и значит из наблюдения следует что Солнце в 1911 раз дальше от Земли чем - фото 34

и значит, из наблюдения следует, что Солнце в 19,11 раз дальше от Земли, чем Луна. Не зная тригонометрии, Аристарх мог лишь заключить, что это число не меньше 19 и не больше 20. На самом деле этот угол равен не 87°, а 89,853°, и поэтому Солнце в действительности находится в 389,77 раз дальше от Земли, чем Луна.

Рис 5 Четыре наблюдения которые Аристарх использовал для расчета размеров - фото 35

Рис. 5. Четыре наблюдения, которые Аристарх использовал для расчета размеров Солнца и Луны и расстояний от Земли до них:а) треугольник, образуемый Землей, Солнцем и Луной в момент, когда Луна находится в середине фазы первой или последней четверти; б) диск Луны точно закрывает диск Солнца для земного наблюдателя во время полного солнечного затмения; в) Луна заходит в тень Земли во время полного лунного затмения. Сфера, которая на месте Луны точно перекрывала бы конус тени, имеет диаметр, вдвое больший, чем у Луны, а точка P – крайняя точка конуса тени, отбрасываемой Землей; г) видимый угловой размер Луны по Аристарху составляет 2°; истинное его значение близко к 0,5°.

Наблюдение 2

Луна точно покрывает видимый диск Солнца во время полного солнечного затмения.

Это показывает, что у Луны и Солнца примерно один и тот же видимый угловой размер, в том смысле, что угол между направлениями от земного наблюдателя на противоположные края диска Солнца такой же, как между направлениями на противоположные края диска Луны (см. рис. 5б). Отсюда следует, что треугольники, образуемые этими линиями и поперечными диаметрами Луны и Солнца, являются «подобными», то есть углы при вершинах у них попарно равны. Поскольку соотношения размеров сторон в подобных треугольниках одинаковы для всех сторон, то

Объясняя мир Истоки современной науки - изображение 36

Исходя из результатов наблюдения 1, Аристарх получил значение отношения D с / D л = 19,11, в то время как настоящее соотношение диаметров двух тел близко к 390.

Читать дальше
Тёмная тема
Сбросить

Интервал:

Закладка:

Сделать


Стивен Вайнберг читать все книги автора по порядку

Стивен Вайнберг - все книги автора в одном месте читать по порядку полные версии на сайте онлайн библиотеки LibKing.




Объясняя мир. Истоки современной науки отзывы


Отзывы читателей о книге Объясняя мир. Истоки современной науки, автор: Стивен Вайнберг. Читайте комментарии и мнения людей о произведении.


Понравилась книга? Поделитесь впечатлениями - оставьте Ваш отзыв или расскажите друзьям

Напишите свой комментарий
x