Ричард Фейнман - Характер физических законов

Тут можно читать онлайн Ричард Фейнман - Характер физических законов - бесплатно ознакомительный отрывок. Жанр: Прочая научная литература, издательство ЛитагентАСТc9a05514-1ce6-11e2-86b3-b737ee03444a, год 2014. Здесь Вы можете читать ознакомительный отрывок из книги онлайн без регистрации и SMS на сайте лучшей интернет библиотеки ЛибКинг или прочесть краткое содержание (суть), предисловие и аннотацию. Так же сможете купить и скачать торрент в электронном формате fb2, найти и слушать аудиокнигу на русском языке или узнать сколько частей в серии и всего страниц в публикации. Читателям доступно смотреть обложку, картинки, описание и отзывы (комментарии) о произведении.

Ричард Фейнман - Характер физических законов краткое содержание

Характер физических законов - описание и краткое содержание, автор Ричард Фейнман, читайте бесплатно онлайн на сайте электронной библиотеки LibKing.Ru

В основу этой книги, больше 50 лет состоящей в списке международных бестселлеров, легли знаменитые лекции Ричарда Фейнмана, прочитанные им в 1964 году в Корнеллском университете. В этих лекциях прославленный физик рассказывает о фундаментальных законах природы и величайших достижениях мировой физики, не утративших своей актуальности и по сей день, – рассказывает простым доступным языком, понятным даже самому обычному читателю. Чего только стоит его знаменитая аналогия с мокрым человеком, который пытается вытереться мокрым полотенцем, на примере которой он объясняет закон сохранения энергии!..

Характер физических законов - читать онлайн бесплатно ознакомительный отрывок

Характер физических законов - читать книгу онлайн бесплатно (ознакомительный отрывок), автор Ричард Фейнман
Тёмная тема
Сбросить

Интервал:

Закладка:

Сделать

Предположим, что законы физики допускают формулировку, основанную на принципе минимума. Тогда можно показать, что из любого закона, допускающего перенос экспериментальной установки, т. е. допускающего пространственные переносы, вытекает закон сохранения количества движения. Между законами симметрии и законами сохранения имеется глубокая связь, но эта связь покоится на принципе минимума. В нашей второй лекции мы говорили о возможности сформулировать физические законы, утверждая, что частица переходит из одного положения в другое за заданный промежуток времени, пробуя различные пути. Существует определенная величина, которую, может быть не очень удачно, называют действием. Если вычислить действие для различных путей перехода, то окажется, что для реального пути, выбранного частицей, это действие всегда меньше, чем для любого другого. Поэтому при новом способе формулировки законов природы мы утверждаем, что для реального пути действие, вычисляемое по определенной математической формуле, всегда меньше, чем для любых других путей. Но вместо того чтобы говорить о минимуме чего-то, можно сказать, что если путь немножко изменить, то сначала почти ничего не изменится. Представьте себе, что вы гуляете по холмам (по гладким, конечно, поскольку все математические выражения, о которых идет речь, гладкие) и приходите на самое низкое место. Тогда, если вы чуть-чуть шагнете в сторону, высота вашего места почти не изменится. Если вы находитесь в самой низкой или самой высокой точке, один шаг не играет никакой роли, в первом приближении он не оказывает никакого влияния на вашу высоту над уровнем моря, – ведь это не то, что на крутом склоне, где вы за один шаг заметно спускаетесь или поднимаетесь в зависимости от того, в каком направлении вы идете. Теперь вам, наверное, понятно, почему один шаг из самой низкой точки не играет роли. Если бы это было не так, то шаг в другом направлении означал бы, что вы спускаетесь. Но так как вы находились перед этим в самой низкой точке и, следовательно, спуститься ниже уже нельзя, то в качестве первого приближения можно считать, что один шаг не играет никакой роли. Поэтому мы знаем, что если путь немножко изменить, то это в первом приближении не изменит действия. Нарисуем какой-нибудь путь, соединяющий точки A и B , и другой возможный путь следующего вида (см. рис. 27). Сначала мы перепрыгиваем сразу в близлежащую точку C , а затем движемся точно по такому же пути, как и раньше, до другой точки D , отстоящей от B на то же расстояние, что и C от A , поскольку оба пути абсолютно идентичны. Но, как мы только что установили, законы физики таковы, что общая величина действия при движении по пути АСDB в первом приближении совпадает с действием при движении по первоначальному пути AB – в силу принципа минимума, если AB – реальный путь.

Рис 27 Но это еще не все Действие при движении по исходному пути от A до В - фото 17

Рис. 27

Но это еще не все. Действие при движении по исходному пути от A до В должно совпадать с действием при движении от С до D , если мир не меняется при пространственных переносах, так как разница между этими двумя путями лишь в пространственном сдвиге. Поэтому если принцип симметрии относительно пространственных переносов справедлив, то действие при движении по пути от A до B должно быть таким же, как и на пути от C до D. Однако для настоящего движения действие для сложной траектории АСDB почти в точности совпадает с действием для траектории AB и, следовательно, с действием для одной своей части, от C до D. Но действие для сложного пути представляет собой сумму трех частей: действие для движения от A до C , от C до D и от D до В. Поэтому, вычитая равное из равного, мы увидим, что вклад от движения от A до C и от D до B должен в сумме давать нуль. Но при движении по одному из этих отрезков мы движемся в одну сторону, а при движении по другому – в другую. Если теперь взять действие при движении от A до C и рассматривать его как эффект движения в одном направлении, а действие при движении от D к B – как действие при движении от B к D , но с другим знаком из-за противоположного направления движения, то мы увидим, что для обеспечения нужного равенства необходимо, чтобы действие при движении из A в C совпадало с действием при движении из B в D. Но это – изменение действия при маленьком шаге из B в D. Эта величина – изменение действия при маленьком шаге вправо – одна и та же и в начале (от A к С ) и в конце (от B к D ). Значит, у нас имеется величина, которая не меняется со временем, если только справедлив принцип минимума и выполняется принцип симметрии относительно пространственных переносов. Эта не изменяющаяся во времени величина (изменения действия при малом шаге в том или ином направлении) оказывается в точности равной количеству движения, о котором говорилось в предыдущей лекции. Такова взаимосвязь между законами симметрии и законами сохранения, вытекающая из того, что законы подчиняются принципу наименьшего действия. А они подчиняются ему, как оказывается, потому, что вытекают из законов квантовой механики. Вот поэтому-то я и сказал, что в конечном счете связь между законами симметрии и законами сохранения объясняется законами квантовой механики.

Рассуждая точно так же относительно сдвигов во времени, мы приходим к закону сохранения энергии. Утверждение о том, что поворот в пространстве не меняет физических законов, оборачивается законом сохранения момента количества движения. Возможность же зеркального отображения не находит себе простого с точки зрения классической физики выражения. Физики называют это свойство четностью, а соответствующий закон сохранения – законом сохранения четности, но это лишь все запутывает. Я решил упомянуть о законе сохранения четности потому, что (возможно, вы читали об этом) этот закон оказался неверным. Произошло это потому, что оказался неверным принцип неразличимости правого и левого.

Раз уж я говорю о законах симметрии, мне хотелось бы сказать вам, что в связи с ними возникло несколько новых задач. Например, у каждой элементарной частицы есть соответствующая ей античастица: для электрона это позитрон, для протона – антипротон. В принципе мы могли бы создать так называемую антиматерию, в которой каждый атом был бы составлен из соответствующих античастиц. Так, обычный атом водорода состоит из одного протона и одного электрона. Если же взять один антипротон, электрический заряд которого отрицателен, и один позитрон и объединить их, то мы получим атом водорода особого типа, так сказать, атом антиводорода. Причем было установлено, что в принципе такой атом был бы ничуть не хуже обычного и что таким образом можно было бы создать антиматерию самого разного вида. Теперь позволительно спросить: а будет ли такая антиматерия вести себя точно так же, как наша материя? И, насколько нам это известно, ответ на этот вопрос должен быть положительным. Один из законов симметрии заключается в том, что если мы сделаем установку из антиматерии, то она станет вести себя точно так же, как и установка из нашей обычной материи. Правда, стоит свести эти установки в одном месте, как произойдет аннигиляция и только искры полетят.

Читать дальше
Тёмная тема
Сбросить

Интервал:

Закладка:

Сделать


Ричард Фейнман читать все книги автора по порядку

Ричард Фейнман - все книги автора в одном месте читать по порядку полные версии на сайте онлайн библиотеки LibKing.




Характер физических законов отзывы


Отзывы читателей о книге Характер физических законов, автор: Ричард Фейнман. Читайте комментарии и мнения людей о произведении.


Понравилась книга? Поделитесь впечатлениями - оставьте Ваш отзыв или расскажите друзьям

Напишите свой комментарий
x