Ричард Фейнман - Характер физических законов

Тут можно читать онлайн Ричард Фейнман - Характер физических законов - бесплатно ознакомительный отрывок. Жанр: Прочая научная литература, издательство ЛитагентАСТc9a05514-1ce6-11e2-86b3-b737ee03444a, год 2014. Здесь Вы можете читать ознакомительный отрывок из книги онлайн без регистрации и SMS на сайте лучшей интернет библиотеки ЛибКинг или прочесть краткое содержание (суть), предисловие и аннотацию. Так же сможете купить и скачать торрент в электронном формате fb2, найти и слушать аудиокнигу на русском языке или узнать сколько частей в серии и всего страниц в публикации. Читателям доступно смотреть обложку, картинки, описание и отзывы (комментарии) о произведении.

Ричард Фейнман - Характер физических законов краткое содержание

Характер физических законов - описание и краткое содержание, автор Ричард Фейнман, читайте бесплатно онлайн на сайте электронной библиотеки LibKing.Ru

В основу этой книги, больше 50 лет состоящей в списке международных бестселлеров, легли знаменитые лекции Ричарда Фейнмана, прочитанные им в 1964 году в Корнеллском университете. В этих лекциях прославленный физик рассказывает о фундаментальных законах природы и величайших достижениях мировой физики, не утративших своей актуальности и по сей день, – рассказывает простым доступным языком, понятным даже самому обычному читателю. Чего только стоит его знаменитая аналогия с мокрым человеком, который пытается вытереться мокрым полотенцем, на примере которой он объясняет закон сохранения энергии!..

Характер физических законов - читать онлайн бесплатно ознакомительный отрывок

Характер физических законов - читать книгу онлайн бесплатно (ознакомительный отрывок), автор Ричард Фейнман
Тёмная тема
Сбросить

Интервал:

Закладка:

Сделать

Раньше считалось, что материя и антиматерия подчиняются одним и тем же законам. Теперь же, когда мы знаем, что симметрии левого и правого не существует, возникает важный вопрос. Если взять нейтронный распад, но с эмиссией античастиц, так что антинейтрон распадается на антипротон и антиэлектрон (по-другому – позитрон) и нейтрино, то будет ли он происходить как и раньше, т. е. будут ли позитроны вылетать, вращаясь в левую сторону, или все будет по-другому? Еще совсем недавно мы полагали, что все здесь будет наоборот, что позитроны (антиматерия) будут вылетать, вращаясь слева направо, а электроны (материя) – справа налево. В этом случае мы в действительности не смогли бы объяснить марсианину, что такое право и что такое лево. Ведь если бы вдруг оказалось, что он состоит из антиматерии, то он, поставив продиктованный ему опыт, наблюдал бы позитрон вместо электрона, а тот вращается в противоположную сторону, и марсианин решил бы, что сердце находится с другой стороны. Предположим, вы вышли на связь с марсианином и объяснили ему, как сделать человека. Он его сделал. Все в порядке, человек вышел на славу. Затем вы объясняете ему наши правила поведения. Наконец, вы строите хороший космический корабль и отправляетесь повидаться с искусственным человеком. Вы выходите ему навстречу, протягиваете руку. Если в ответ он протягивает вам тоже правую руку – прекрасно, но если левую – берегитесь, как бы вам с ним не аннигилировать!

Мне хотелось бы рассказать вам еще о некоторых свойствах симметрии, но говорить о них гораздо труднее. Кроме того, в природе есть совершенно замечательные явления, связанные с так называемой слабой симметрией. Разве не замечательно, например, что отличить правое от левого мы можем лишь по очень слабому эффекту b-распада? Это значит, что на 99,99 % природе все равно, что левое, что правое, – и вдруг одно едва приметное явленьице выходит из ряда вон и оказывается совершенно однобоким.

Лекция 5. Различие прошлого и будущего

Каждому ясно, что события, происходящие в нашем мире, явно необратимы. Другими словами, все происходит так, а не наоборот. Роняешь чашку, она разбивается, и сколько ни жди, черепки не соберутся снова и чашка не прыгнет обратно тебе в руки. А на берегу моря, где разбиваются волны, можно долго стоять и напрасно ждать того великого момента, когда пена соберется в волну, встанет над морем и покатится все дальше и дальше от берега – вот было бы зрелище!

На лекциях такие штуки обычно показывают при помощи кино: вырезают кусок кинопленки, на котором снята какая-то последовательность событий, и показывают его в обратном направлении, заранее рассчитывая на взрыв смеха. Этот смех свидетельствует о том, что в реальной жизни такого не бывает. Впрочем, на самом деле это довольно примитивный способ выражения столь очевидного и столь глубокого факта, как различие прошлого и будущего. Мы помним прошлое, но не помним будущего. Наша осведомленность о том, что может произойти, совсем другого рода, чем о том, что, вероятно, уже произошло. Прошлое и настоящее совсем по-разному воспринимаются психологически: для прошлого у нас есть такое реальное понятие, как память, а для будущего – понятие кажущейся свободы воли. Мы уверены, что каким-то образом можем влиять на будущее, но никто из нас, за исключением, быть может, одиночек, не думает, что можно изменить прошлое. Раскаяние, сожаление и надежда – это все слова, которые совершенно очевидным образом проводят грань между прошлым и будущим.

Но если все в этом мире сделано из атомов и мы тоже состоим из атомов и подчиняемся физическим законам, то наиболее естественно это очевидное различие между прошлым и будущим, эта необратимость всех явлений объяснялась бы тем, что у некоторых законов движения атомов только одно направление – что атомные законы не одинаковы по отношению к прошлому и будущему. Где-то должен существовать принцип вроде: «Из елки можно сделать палку, а из палки не сделаешь елки», в связи с чем наш мир постоянно меняет свой характер с елочного на палочный, и эта необратимость взаимодействий должна быть причиной необратимости всех явлений нашей жизни.

Однако такой принцип пока еще не найден. То есть во всех законах физики, обнаруженных до сих пор, не наблюдается никакого различия между прошлым и настоящим. Кинолента должна показывать одно и то же в обе стороны, и физик, который увидит ее, не имеет никаких оснований для смеха.

Обратимся еще раз к закону всемирного тяготения. Рассмотрим Солнце и планету, которая вращается вокруг Солнца в некотором направлении. Заснимем это движение на кинопленку, а затем покажем отснятый фильм задом наперед. Что же произойдет? Мы увидим, что планета вращается вокруг Солнца, правда, в обратном направлении, и траектория ее движения образует эллипс. Скорость движения планеты оказывается такой, что за равные промежутки времени радиус, соединяющий Солнце и планету, описывает всегда равные площади. В действительности все будет точно таким, каким это должно быть. Нам не удастся решить, в каком направлении нам показывают фильм – в прямом или обратном. Так что для закона всемирного тяготения безразлично направление времени; если вам показывают задом наперед любой фильм о событиях, связанных лишь с законами тяготения, то все, что вы увидите на экране, будет выглядеть совершенно естественным. Эту мысль можно выразить еще более точно. Если в какой-то сложной системе скорости всех частиц вдруг мгновенно изменят свои значения на обратные, то система вернется в исходное положение, пройдя в обратном порядке все те стадии, которые она уже прошла до внезапного изменения скоростей. Так что если имеется множество частиц, выполняющих какую-то работу, и мы мгновенно изменим их скорости на обратные, то частицы эти полностью исправят все то, что они успели к этому моменту сделать.

Это свойство заложено в самой формулировке закона всемирного тяготения, утверждающего, что под действием силы изменяется скорость. Если изменить направление времени, то силы не изменятся и, следовательно, на соответствующих промежутках времени не изменятся и приращения скорости. Поэтому каждая скорость претерпит точно такие же изменения, как и раньше, только в обратной последовательности. Так что доказать обратимость во времени закона всемирного тяготения совсем не трудно.

Ну а законы электричества и магнетизма? Они тоже обратимы во времени. Законы ядерной физики? Насколько мы знаем, обратимы. Законы b-распада, о которых мы уже говорили раньше, также обратимы? Наши трудности с экспериментами, проводившимися несколько месяцев тому назад и показавшими, что здесь не все так гладко, что какие-то законы нам еще не известны, заставляют думать, что на самом деле b-распад, может быть, и необратим во времени, и для того, чтобы окончательно убедиться в этом, нам понадобятся новые опыты [23]. Но так или иначе никто не сомневается в следующем: b-распад (обратим он во времени или нет) представляет собой явление третьестепенной важности для большинства повседневных ситуаций. То, что я могу говорить с вами, не зависит от b-распада, но зависит от химических взаимодействий, от наличия электрических сил, немного (пока что) от ядерных реакций, а также и от гравитационных явлений. Тем не менее все, что я делаю, определенно необратимо во времени: я говорю, и воздух разносит мой голос, а не засасывается обратно в рот, когда я его открываю, и эту необратимость невозможно оправдать одной необратимостью b-распада. Другими словами, можно считать, что почти все наиболее часто встречающиеся явления этого мира, возникающие в результате перемещений атомов, подчиняются законам, полностью обратимым во времени. Так что нам придется поискать какое-нибудь другое объяснение этой необратимости.

Читать дальше
Тёмная тема
Сбросить

Интервал:

Закладка:

Сделать


Ричард Фейнман читать все книги автора по порядку

Ричард Фейнман - все книги автора в одном месте читать по порядку полные версии на сайте онлайн библиотеки LibKing.




Характер физических законов отзывы


Отзывы читателей о книге Характер физических законов, автор: Ричард Фейнман. Читайте комментарии и мнения людей о произведении.


Понравилась книга? Поделитесь впечатлениями - оставьте Ваш отзыв или расскажите друзьям

Напишите свой комментарий
x