Аурика Луковкина - Техническая механика. Шпаргалка

Тут можно читать онлайн Аурика Луковкина - Техническая механика. Шпаргалка - бесплатно ознакомительный отрывок. Жанр: Прочая научная литература, издательство Array Литагент «Научная книга», год 2009. Здесь Вы можете читать ознакомительный отрывок из книги онлайн без регистрации и SMS на сайте лучшей интернет библиотеки ЛибКинг или прочесть краткое содержание (суть), предисловие и аннотацию. Так же сможете купить и скачать торрент в электронном формате fb2, найти и слушать аудиокнигу на русском языке или узнать сколько частей в серии и всего страниц в публикации. Читателям доступно смотреть обложку, картинки, описание и отзывы (комментарии) о произведении.

Аурика Луковкина - Техническая механика. Шпаргалка краткое содержание

Техническая механика. Шпаргалка - описание и краткое содержание, автор Аурика Луковкина, читайте бесплатно онлайн на сайте электронной библиотеки LibKing.Ru
Настоящее издание поможет систематизировать полученные ранее знания, а также подготовиться к экзамену или зачету и успешно их сдать.

Техническая механика. Шпаргалка - читать онлайн бесплатно ознакомительный отрывок

Техническая механика. Шпаргалка - читать книгу онлайн бесплатно (ознакомительный отрывок), автор Аурика Луковкина
Тёмная тема
Сбросить

Интервал:

Закладка:

Сделать

Условие равновесия плоской системы сходящихся сил. При равновесии системы сил равнодействующая должна быть равна нулю, следовательно, при геометрическом построении конец последнего вектора должен совпасть с началом первого.

Если плоская система сходящихся сил находится в равновесии, многоугольник сил этой системы должен быть замкнут.

Если в системе три силы, образуется треугольник сил.

Геометрическим способом пользуются, если в системе три силы. При решении задач на равновесие тело считается абсолютно твердым (отвердевшим).

Задачи решаются в следующем порядке.

1. Определить возможное направление реакций связей.

2. Вычертить многоугольник сил системы, начиная с известных сил, в некотором масштабе. (Многоугольник должен быть замкнут, все векторы-слагаемые направлены в одну сторону по обходу контура).

3. Измерить полученные векторы сил и определить их величину, учитывая выбранный масштаб.

4. Для уточнения определить величины векторов (сторон многоугольника) с помощью геометрических зависимостей.

4. Определение равнодействующей аналитическим способом

Проекция сил на осьопределяется отрезком оси, отсекаемой перпендикулярами, опущенными на ось из начала и конца вектора.

Величина проекции силы на осьравна произведению модуля силы на косинус угла между вектором силы и положительным направлением сил. Проекция имеет знак: положительный при одинаковом направлении вектора силы и оси и отрицательный при направлении в сторону отрицательной полуоси.

Проекция силы на две взаимно перпендикулярные оси.

F x = F cosα > 0

F y = F cosβ = F sinα > 0

Величина равнодействующей равна векторной (геометрической) сумме векторов системы сил. Определим равнодействующую аналитическим способом. Выберем систему координат, определим проекции всех заданных векторов на эти оси. Складываем проекции всех векторов на оси х и у .

F Σx= F 1 x + F 2 x + F 3 x + F 4 x ;

F Σ y = F 1 y + F 2 y + F 3 y + F 4 y .

Модуль (величину) равнодействующей можно определить по известным проекциям:

Техническая механика Шпаргалка - изображение 1

Направление вектора равнодействующей можно определить по величинам и знакам косинусов углов, образуемых равнодействующими с осями координат:

Техническая механика Шпаргалка - изображение 2

Плоская система сходящихся сил находится в равновесии, если алгебраическая сумма проекций всех сил системы на любую ось равна нулю.

Система уравнений равновесия плоской системы сходящихся сил:

Техническая механика Шпаргалка - изображение 3

При решении задач координатные оси выбирают так, чтобы решение было наиболее простым. При этом желательно, чтобы хотя бы одна неизвестная сила совпадала с осью координат.

5. Пара сил. Момент силы

Парой силназывается система двух сил, равных по модулю, параллельных и направленных в разные стороны.

Пара сил вызывает вращение тела, и ее действие на тело оценивается моментом. Силы, входящие в пару, не уравновешиваются, так как они приложены к двум точкам.

Действие этих сил на тело не может быть заменено одной равнодействующей силой.

Момент пары сил численно равен произведению модуля силы на расстояние между линиями действия сил плеча пары.

Момент считается положительным, если пара вращает тело по часовой стрелке.

M ( f,f ') = Fa; M > 0.

Плоскость, проходящая через линии действия сил пары, называется плоскостью действия пары.

Свойства пар сил.

1. Пару сил можно перемещать в плоскости ее действия.

2. Эквивалентность пар. Две пары, моменты которых равны, эквивалентны (действие их на тело аналогично).

3. Сложение пар сил. Систему пар сил можно заменить равнодействующей парой.

Момент равнодействующей пары равен алгебраической сумме моментов пар, составляющих систему:

M Σ= F 1 a 1+ F 2 a 2+ F 3 a 3+ … + F n a 1;

Техническая механика Шпаргалка - изображение 4

Равновесие пар.Для равновесия пар необходимо и достаточно, чтобы алгебраическая сумма моментов пар системы равнялась нулю:

Техническая механика Шпаргалка - изображение 5

Момент силы относительно точки.Сила, не проходящая через точку крепления тела, вызывает вращение тела относительно точки, поэтому действие такой силы на тело оценивается моментом.

Момент силы относительно точки численно равен произведению модуля силы на расстояние от точки до линии действия силы. Перпендикуляр, опущенный из точки на линию действия силы, называется плечом силы.

Момент обозначается:

M O = ( F ) или m O (F).

Момент считается положительным, если сила разворачивается по часовой стрелке.

6. Плоская система произвольно расположенных сил

Теорема Пуансо о параллельном переносе сил.

Силу можно перенести параллельно линии ее действия, при этом нужно добавить пару сил с моментом, равным произведению модуля силы на расстояние, на которое перенесена сила.

Приведение к точке плоской системы произвольно расположенных сил.

Все силы системы переносят в одну произвольно выбранную точку, называемую точкой приведения. При этом применяют теорему Пуансо. При любом переносе силы в точку, не лежащую на линии действия, добавляют пару сил.

Появившиеся при переносе пары называют присоединенными парами.

Образующуюся систему пар сил можно заменить одной эквивалентной парой – главным моментом системы.

Главный вектор равен геометрической сумме векторов произвольной плоской системы сил.

Главный момент системы сил равен алгебраической сумме моментов сил системы - фото 6

Главный момент системы сил равен алгебраической сумме моментов сил системы относительно точки приведения.

M ГЛ 0= m 1+ m 2+ m 3+ … + m n ;

Влияние точки приведения.Точка приведения выбрана произвольно. При изменении положения точки приведения величина главного вектора не изменится.

Величина главного момента при переносе точки приведения изменится, так как меняются расстояния векторов-сил до новой точки приведения.

На основании теоремы Вариньона о моменте равнодействующей можно определить точку на плоскости, относительно которой главный момент равен нулю. Тогда произвольная плоская система может быть заменена одной силой – равнодействующей системы сил.

Читать дальше
Тёмная тема
Сбросить

Интервал:

Закладка:

Сделать


Аурика Луковкина читать все книги автора по порядку

Аурика Луковкина - все книги автора в одном месте читать по порядку полные версии на сайте онлайн библиотеки LibKing.




Техническая механика. Шпаргалка отзывы


Отзывы читателей о книге Техническая механика. Шпаргалка, автор: Аурика Луковкина. Читайте комментарии и мнения людей о произведении.


Понравилась книга? Поделитесь впечатлениями - оставьте Ваш отзыв или расскажите друзьям

Напишите свой комментарий
x