Владимир Живетин - Системы аэромеханического контроля критических состояний

Тут можно читать онлайн Владимир Живетин - Системы аэромеханического контроля критических состояний - бесплатно ознакомительный отрывок. Жанр: Прочая научная литература, издательство Институт проблем риска, ООО Информационно-издательский центр «Бон Анца», год 2010. Здесь Вы можете читать ознакомительный отрывок из книги онлайн без регистрации и SMS на сайте лучшей интернет библиотеки ЛибКинг или прочесть краткое содержание (суть), предисловие и аннотацию. Так же сможете купить и скачать торрент в электронном формате fb2, найти и слушать аудиокнигу на русском языке или узнать сколько частей в серии и всего страниц в публикации. Читателям доступно смотреть обложку, картинки, описание и отзывы (комментарии) о произведении.
  • Название:
    Системы аэромеханического контроля критических состояний
  • Автор:
  • Жанр:
  • Издательство:
    Институт проблем риска, ООО Информационно-издательский центр «Бон Анца»
  • Год:
    2010
  • Город:
    Москва
  • ISBN:
    978-5-98664-060-0, 978-5-903140-40-4
  • Рейтинг:
    5/5. Голосов: 11
  • Избранное:
    Добавить в избранное
  • Отзывы:
  • Ваша оценка:
    • 100
    • 1
    • 2
    • 3
    • 4
    • 5

Владимир Живетин - Системы аэромеханического контроля критических состояний краткое содержание

Системы аэромеханического контроля критических состояний - описание и краткое содержание, автор Владимир Живетин, читайте бесплатно онлайн на сайте электронной библиотеки LibKing.Ru
Целью управляющих воздействий в таких аэродинамических системах, как самолет, является достижение потребных значений поля сил аэродинамического давления, определяющих его состояние во времени. В монографии представлены результаты теоретико-экспериментального метода аэромеханического контроля, включающего математические методы обработки первичной информации (перепада давления) и средств их практической реализации. Рассмотрены проблемы обеспечения безопасного полета, анализа, прогнозирования и предотвращения одной из самых опасных ситуаций полета – сваливания.
Монография предназначена для специалистов в области контроля и управления самолетом.

Системы аэромеханического контроля критических состояний - читать онлайн бесплатно ознакомительный отрывок

Системы аэромеханического контроля критических состояний - читать книгу онлайн бесплатно (ознакомительный отрывок), автор Владимир Живетин
Тёмная тема
Сбросить

Интервал:

Закладка:

Сделать

– управление углом атаки;

– парирование нагрузки от порыва ветра;

– предотвращение срыва потока на несущих поверхностях ЛА.

В работе [31] предлагается контролировать угол атаки на поверхности датчиками давления, расположенными приблизительно на расстоянии (10÷15)% хорды от ее начала. Перепад давления, как отмечает автор, здесь пропорционален углу атаки или углу скольжения на вертикальном оперении. Таким образом, выдерживание постоянного перепада давления будет эквивалентно выдерживанию постоянного угла атаки для данных полетных условий. При этом датчик перепада давления, расположенный на несущем крыле, будет контролировать (управлять) отклонение руля высоты.

Парирование порывов ветра в данной системе осуществляется не за счет сигналов отклонения от траектории, а за счет сигналов об изменении сил давления, когда еще нет отклонений ЛА. При этом датчики перепадов давления размещаются на крыле и хвостовом оперении на одном и том же расстоянии по хорде. В результате датчик на правом крыле будет контролировать положение правого элерона, в то время как датчик на левом крыле будет контролировать положение левого элерона. Элеронам будут предписываться отклонения независимо друг от друга, поэтому для того, чтобы компенсировать несимметричный порыв ветра, изменятся величина давления, результирующая подъемная сила и момент крена. Руль высоты и руль направления будут сохранять моменты тангажа и рыскания в равновесии.

Предупреждение срыва достигается применением датчиков перепада давления, подобным датчикам, рассмотренным для угла атаки α. Ограничивая перепад давления, мы воздействуем на α и предотвращаем срыв при любом весе самолета, а также срыв в динамическом режиме полета.

Следующим потребителем информации о поле аэродинамических сил является вертолет. Рассмотрим это направление на примере активной системы устранения срывного флаттера лопасти [31]. Предотвращение срыва потока, имеющего место на лопастях вертолета, является актуальной задачей. Это обусловлено требованиями маневренности и желанием эксплуатирующих организаций перевозить грузы максимально допустимого веса. В ходе исследований, начатых в 1970 году и осуществляемых в течение нескольких лет в рамках контрактов французского правительства, основной упор делается на активную систему устранения срывного флаттера лопастей [31]. В этих работах для активного управления срывом лопастей используется информация о поле сил аэродинамического давления для формирования сигнала управления углом тангажа таким образом, чтобы не происходил срыв потока. С этой целью строится следящая система для управления распределением давления на лопастях.

Как показывают эксперименты, комбинация срывного и вихревого противодействий, приводящая к внезапному повышению давления подсасывания на передней кромке, имеет место, когда лопасть находится в четвертом квадранте, т. е. при Ψ = 270°÷360°. При этом давление на передней кромке особенно чувствительно к срыву, следовательно подходит для распознавания условий, близких к срывным. Чтобы исследовать проблему количественно, предпочтительнее иметь дело с коэффициентом давления C p , чем с абсолютным давлением. В таком подходе предотвращение срыва решается путем ограничения величины C p . Когда величина C p maxначала срыва известна, тогда ее можно использовать в качестве сигнала рассогласования для того, чтобы избежать отрыв потока на аэродинамической поверхности. При этом необходимо вводить цепь с обратной связью, в которой используется информация о величине C p , а также силовой привод для обеспечения условия C p < C p max.

Таким образом, использование информации о перепаде давления, измеренного в характерных точках на поверхности ЛА, является перспективным. Такая информация в измерительных системах используется давно [3, 8]. Однако в известных системах она применяется для измерения невозмущенного потока, в том числе с помощью приемников воздушного давления (давления торможения и статического давления), что не полностью характеризует состояние конкретного ЛА, а определяет лишь собственно движение его как материальной точки. Исследование таких систем проведено в монографии [30], в которых указывается на недостаточную точность функционирования таких измерительных систем при больших значениях углов атаки и скольжения, что приводит к нарушению адекватности между состоянием ЛА и его информационной моделью. Перспективные измерительные системы, как отмечено в работах [3, 8], должны включать в себя вычислители воздушных параметров, работающие с более высокой точностью.

К настоящему времени проведен определенный объем исследований по разработке компенсационного алгоритма измерения статического давления P ст , динамического давления P дин , угла атаки а. При этом строилась модель погрешностей, обусловленных влиянием возмущений, вносимых ЛА. Работы проводились в Летно-исследовательском институте.

В представленной монографии решается задача построения алгоритмов обработки первичной информации, которая представлена в виде дискретных значений поля сил аэродинамического давления на несущих поверхностях ЛА, с целью определения значений его воздушно-скоростных параметров состояния. Поскольку техническая реализация съема давлений возможна только в дискретных точках поверхности ЛА, то возникает задача об установлении адекватной связи между значениями давлений в этих точках и интегральными аэродинамическими характеристиками ЛА в целом и его частей. В связи с этим, опираясь на экспериментальные данные, полученные в аэродинамической трубе Казанского авиационного института, и расчетно-экспериментальные работы Центрального аэрогидродинамического института 1972–1976 годов, автор выдвинул гипотезу о линейной зависимости между коэффициентом подъемной силы C y и коэффициентом перепада давления картинка 1 в отдельной точке или нескольких точках по хорде сечения крыла. Позднее в монографии [9] был представлен график линейной зависимости между C y и картинка 2, полученный экспериментальным путем при исследовании вертолетных винтов.

Доказанная в монографии теорема о линейной зависимости между коэффициентами подъемной силы и перепада давления на профиле, получившая у специалистов высокую оценку в следующем виде: «Доказательство очень красивое и вносит вклад в теорию профиля. Здорово!» (доктор физико-математических наук, профессор Казанского государственного университета Маклаков Д.В.), применена в задачах построения алгоритмов обработки аэрометрической информации для вычисления параметров состояния ЛА в полете. На основе полученных алгоритмов разработаны способы и построены системы измерения параметров состояния ЛА, которые защищены авторскими свидетельствами.

Читать дальше
Тёмная тема
Сбросить

Интервал:

Закладка:

Сделать


Владимир Живетин читать все книги автора по порядку

Владимир Живетин - все книги автора в одном месте читать по порядку полные версии на сайте онлайн библиотеки LibKing.




Системы аэромеханического контроля критических состояний отзывы


Отзывы читателей о книге Системы аэромеханического контроля критических состояний, автор: Владимир Живетин. Читайте комментарии и мнения людей о произведении.


Понравилась книга? Поделитесь впечатлениями - оставьте Ваш отзыв или расскажите друзьям

Напишите свой комментарий
x