Владимир Живетин - Введение в анализ риска
- Название:Введение в анализ риска
- Автор:
- Жанр:
- Издательство:Институт проблем риска, ООО Информационно-издательский центр «Бон Анца»
- Год:2008
- Город:Москва
- ISBN:978-5-98664-036-5, 978-5-903140-13-8
- Рейтинг:
- Избранное:Добавить в избранное
-
Отзывы:
-
Ваша оценка:
Владимир Живетин - Введение в анализ риска краткое содержание
Работа может быть полезна инвесторам, конструкторам-проектировщикам, экономистам, производственникам, изучающим, с точки зрения анализа риска, проблемы проектирования, производства и эксплуатации динамических систем различного назначения, а также аспирантам и студентам, обучающимся по специальностям «Информационные системы в экономике», «Системы обработки информации и управления».
Введение в анализ риска - читать онлайн бесплатно ознакомительный отрывок
Интервал:
Закладка:
Автор выражает искреннюю признательность за большую помощь в подготовке монографии к изданию Савва Е.Б.
Глава 1. Проблема анализа риска в динамических системах
1.1. Динамические системы. Основные понятия
Предметом дальнейшего изучения является система , под которой будем понимать совокупность объектов любой природы, находящихся в определенных отношениях и связях между собой и образующих определенную целостность, единство. Примерами систем могут служить весь окружающий нас мир или любая его часть, человеческое общество, государство, область (район), завод, банк, летательный аппарат, человек. Таким образом, любая система может быть рассмотрена как элемент системы более высокого порядка, в то же время ее элементы могут выступать в качестве систем более низкого порядка, т. е. более простых систем по отношению к рассматриваемой. Иерархичность, многоуровневость характеризуют строение, морфологию системы, ее функционирование. Отдельные уровни системы обусловливают определенные аспекты функционирования, а целостное функционирование является результатом взаимодействия всех ее сторон, уровней.
В дальнейшем ограничимся рассмотрением систем, в которых осуществляются процессы передачи информации и управления. К особенностям таких систем отнесем следующие:
– в процессе функционирования системы всегда решается множество задач, некоторые из них в силу объективных или субъективных причин оказываются противоречивыми по отношению к поставленной цели;
– в силу неполной определенности условий функционирования, оно всегда протекает при той или иной неопределенности условий, включая внешнюю среду, внутренние свойства самой системы, достигаемые ею цели и т. п.;
– на процесс функционирования, как правило, большое влияние оказывает человек;
– в процессе функционирования в системах происходят процессы старения, деградации, разрушения, изнашивания или развития тех или иных подсистем.
Для достижения заданной цели в системе используется соответствующий алгоритм функционирования, реализованный в виде некоторой материальной структуры (средств контроля, обработки информации, управления, реализации необходимых действий).
Разработанная и реализованная структура системы может не в полной мере обеспечивать достижение всех поставленных целей. Поэтому важным для системы (ее организатора, создателя, руководителя) является степень недостижения целей, которая определяет несоответствие состава структуры и свойств системы, необходимых для достижения цели.
Любую объективную особенность системы, которая проявляется при ее создании или эксплуатации, называют свойством системы . Совокупность свойств системы, обусловливающих ее пригодность выполнять определенные задачи, будем называть качеством системы . При этом различают качество системы как объекта проектирования, производства и качество процесса ее функционирования, характеризующее степень приспособленности системы для решения поставленной цели.
Каждая система обладает совокупностью свойств, определяющих ее качество. Любое i -е свойство системы может быть описано количественно с помощью некоторой переменной, например, a i , значение которой и характеризует ее качество относительно такого свойства. Эту переменную назовем показателем i-го свойства системы . Если ее можно представить в виде функциональной зависимости a i = f ( a 1, a 2, …, a i –1, , a i +1, …, a n ), то в этом случае a i называется обобщенным показателем свойств.
Отметим, что в рассматриваемых нами задачах для оценки любого свойства достаточно количественной характеристики. В целом же существуют такие свойства, как структурная устойчивость, когда количественных характеристик недостаточно и необходимо вводить дополнительные характеристики, что не всегда представляется возможным. Обобщенные показатели свойств системы, не зависящие от условий, в которых она функционирует, могут использоваться при исследовании ее внутренней структуры.
В дальнейшем будем использовать следующие понятия. Показатели качества системы, составленные из абсолютных или относительных показателей ее свойств, будем подразделять на функциональные и экономические . Функциональные характеризуют способность системы выполнять возложенные на нее функции для достижения поставленных целей (задач). Экономические показатели характеризуют, с одной стороны, затраты, необходимые для придания системе требуемых качеств, а с другой – экономический эффект от ее функционирования. Желаемые или необходимые качества системы будем задавать условиями, которым должны удовлетворять значения показателей этих качеств. Эти условия называются критериями оценки качества системы.
Для решения тех или иных задач необходимы системы, обладающие вполне определенной структурой, свойствами. В дальнейшем будем характеризовать свойства системы с помощью некоторых параметров. Например, в качестве таких параметров для летательного аппарата (ЛА) выступают высота, скорость полета, температура в салоне, для банка – объем оборотных средств, для завода – качество выпускаемой продукции. В процессе анализа системы важно определить соответствия возможных, фактических и необходимых свойств системы и ее подсистем для выполнения поставленной цели. Для решения таких задач воспользуемся понятием динамической системы.
Динамической называют систему, свойства которой изменяются во времени. Динамические системы образуют широкий класс систем, в том числе технических, экономических, биофизических, социальных.
Соответствие между фактическими и необходимыми свойствами системы, обусловленные их устойчивостью, в процессе функционирования динамической системы может нарушаться. Наша задача состоит в сохранении на заданном уровне определенных свойств, их совокупности и отношений, повторяемости допустимых ситуаций в заданных условиях.
Идеальным решением проблемы о достижении поставленных целей было бы получение явной системы критериев, выполнение которых гарантирует как структурную, так и функциональную (динамическую) устойчивость таких систем, как «менеджер – система», «ЛА – экипаж», «ЛА – пилот». Однако такая задача в настоящее время находится в постановочной стадии.
Следует отметить, что в последние десятилетия начинают решать задачи построения и исследования моделей, в которых описываются процессы перехода медленных, постепенных, количественных изменений в коренные, качественные, в том числе структурные. К ним, в частности, относятся модели теории катастроф, математические модели синергетики или теории самоорганизации и других. Такие задачи не могут быть решены без предварительной конкретизации типа системы и ее математической модели. При этом даже для очень простых систем решение получается чрезвычайно сложным.
Читать дальшеИнтервал:
Закладка: