Владимир Живетин - Безопасность полета вертолета. Системы аэромеханического контроля
- Название:Безопасность полета вертолета. Системы аэромеханического контроля
- Автор:
- Жанр:
- Издательство:Изд-во Института проблем риск
- Год:2010
- Город:Москва
- ISBN:978-5-98664-059-4, 978-5-903140-41-1
- Рейтинг:
- Избранное:Добавить в избранное
-
Отзывы:
-
Ваша оценка:
Владимир Живетин - Безопасность полета вертолета. Системы аэромеханического контроля краткое содержание
На основе полученных результатов синтезированы устройства контроля: массы вертолета, тяги несущего винта, продольной и боковой скоростей полета, угла атаки лопасти несущего винта.
Безопасность полета вертолета. Системы аэромеханического контроля - читать онлайн бесплатно ознакомительный отрывок
Интервал:
Закладка:

Таблица 5.2. Значения производных безразмерной продольной скорости движения НВ вертолета Ми-8 ( C R = 0,02, = 0,4,
= 0,4, ρ = 1,228 кг/м 3, М = 0,65)

Таблица 5.3. Значения производных продольной скорости движения НВ вертолета Ми-8 ( С R = 0,01, = 0,4,
= 0,4, ρ = 1,228 кг/м 3, М = 0,65, ω = 20 рад/с)

Таблица 5.4. Значения производных продольной скорости движения НВ вертолета Ми-8 ( С R = 0,02, = 0,4,
= 0,4, ρ = 1,228 кг/м 3, М = 0,65, ω = 20 рад/с)

Таблица 5.5. Абсолютная погрешность измерения продольной скорости движения НВ вертолета Ми-8 (в м/с) ( C R = 0,01, = 0,4,
= 0,4, ρ = 1,228 кг/м 3, М = 0,65, ω = 20 рад/с)

Таблица 5.6. Абсолютная погрешность измерения продольной скорости движения НВ вертолета Ми-8 (в м/с) ( C R = 0,02, = 0,4,
= 0,4, ρ = 1,228 кг/м 3, М = 0,65, ω = 20 рад/с)

5.3. Аэрометрический метод измерения осевой скорости движения несущего винта. Математическая модель
Проблема измерения осевой составляющей скорости движения НВ вертолета связана, прежде всего, с обеспечением безопасности пилотирования, а именно с предупреждением попадания вертолета в режим «вихревого кольца». Как известно, на режиме «вихревого кольца» снижается тяга НВ, вследствие чего вертолет резко увеличивает скорость снижения, что при малой высоте полета может привести к аварийной ситуации; вследствие турбулентного состояния потока в вихревом кольце возникает тряска вертолета, ухудшаются его устойчивость и управляемость, а для двухроторного вертолета соосной схемы возможен перехлест лопастей, что неминуемо приводит к аварии.
«Вихревое кольцо» начинает образовываться при малых скоростях продольного движения со скоростями моторного снижения порядка 2–4 м/с, и интенсивность его образования возрастает по мере увеличения скорости снижения до значения, когда эта скорость равняется величине индуктивного скоса потока в плоскости диска НВ. В связи с этим скорость снижения «по-вертолетному» ограничивается величиной в 2 м/с.
Существующий метод измерения вертикальной скорости движения вертолета с помощью вариометра, регистрирующего скорость изменения барометрической высоты полета, обладает двумя основными недостатками: значительное запаздывание системы и то, что он определяет вертикальную скорость перемещений вертолета лишь относительно уровня моря, в то время как для предупреждения выхода вертолета на режим «вихревого кольца» необходимо ограничивать осевую составляющую воздушной скорости движения НВ. Эта скорость складывается из скорости перемещения вертолета относительно уровня моря и составляющей скорости ветра и восходящего или нисходящего потока.
В качестве одного из путей решения проблемы измерения осевой скорости движения НВ является аэрометрический метод измерения, реализация которого возможна во всем диапазоне моторного снижения и подъема вертолета за исключением зоны достаточно развитого «вихревого кольца». Основная идея этого метода основана на использовании реакции НВ вертолета на изменение осевой скорости его движения при фиксированных или заданных остальных параметрах движения НВ. В частности, при изменении осевой скорости движения НВ θ у происходит перераспределение аэродинамической нагрузки по сечениям лопасти, что и используется в аэрометрическом методе измерения этой скорости.
Анализ зависимостей распределения аэродинамической нагрузки по сечениям лопасти (рис. 5.10 и 5.11) показывает, что изменение осевой скорости θ у не приводит к изменению аэродинамической нагрузки, следовательно и поля давлений, в сечении = 0,7, в то же время увеличение осевой скорости движения НВ при фиксированных остальных параметрах его движения приводит к уменьшению аэродинамической нагрузки в сечениях, лежащих ближе к комлю лопасти (при
< 0,7), и ее увеличению в концевых сечениях (при
> 0,7). В силу линейной зависимости (5.3) между коэффициентом подъемной силы сечения
и коэффициентом перепада давления
аналогичная закономерность проявляется и для коэффициента перепада давления.
Таким образом, используя функциональную связь между коэффициентами перепада давления в выбранной точке лопасти и параметрами движения НВ по информации об осредненном перепаде давления в этой точке и остальным заданным параметрам движения НВ, мы имеем возможность вычисления величины осевой составляющей скорости набегающего на винт потока.
Для рационального выбора места съема информации о перепаде давления на лопасти с целью идентификации осевой составляющей набегающего на винт потока следует руководствоваться следующими соображениями:
– в случае расположения датчика перепада давления в сечении лопасти, в котором осуществляется съем перепада давления, с целью снижения инерционных перегрузок на датчик до минимума желателен выбор этого сечения ближе к комлю лопасти;
Читать дальшеИнтервал:
Закладка: