Джеймс Гордон - Почему мы не проваливаемся сквозь пол

Тут можно читать онлайн Джеймс Гордон - Почему мы не проваливаемся сквозь пол - бесплатно полную версию книги (целиком) без сокращений. Жанр: sci-build. Здесь Вы можете читать полную версию (весь текст) онлайн без регистрации и SMS на сайте лучшей интернет библиотеки ЛибКинг или прочесть краткое содержание (суть), предисловие и аннотацию. Так же сможете купить и скачать торрент в электронном формате fb2, найти и слушать аудиокнигу на русском языке или узнать сколько частей в серии и всего страниц в публикации. Читателям доступно смотреть обложку, картинки, описание и отзывы (комментарии) о произведении.
  • Название:
    Почему мы не проваливаемся сквозь пол
  • Автор:
  • Жанр:
  • Издательство:
    неизвестно
  • Год:
    неизвестен
  • ISBN:
    нет данных
  • Рейтинг:
    4.13/5. Голосов: 81
  • Избранное:
    Добавить в избранное
  • Отзывы:
  • Ваша оценка:
    • 80
    • 1
    • 2
    • 3
    • 4
    • 5

Джеймс Гордон - Почему мы не проваливаемся сквозь пол краткое содержание

Почему мы не проваливаемся сквозь пол - описание и краткое содержание, автор Джеймс Гордон, читайте бесплатно онлайн на сайте электронной библиотеки LibKing.Ru

Еще в первые десятилетия нашего века ответ на вопросы о свойствах материалов
искали в эксперименте. И лишь последние 40 лет ученые, специалисты в области
материаловедения, стали серьезно изучать строение материалов, убедившись, что
их свойства зависят от совершенства в расположении атомов. Обо всем этом живо и
с юмором рассказывает автор книги профессор университета в Рединге
(Великобритания) Джеймс Эдвард Гордон. Книга рассчитана не только на школьников
и студентов, но и на тех, кого по роду работы интересует поведение современных
материалов и прочность конструкций.

Почему мы не проваливаемся сквозь пол - читать онлайн бесплатно полную версию (весь текст целиком)

Почему мы не проваливаемся сквозь пол - читать книгу онлайн бесплатно, автор Джеймс Гордон
Тёмная тема
Сбросить

Интервал:

Закладка:

Сделать

Гриффитс и энергия

Теперь мы должны вернуться назад, к 1920 году, когда вся проблема прочности довольно основательно подзавязла. В то время А.А. Гриффитс (1893–1963), молодой сотрудник Авиационного исследовательного центра в Фарнборо, носился с идеями, которые шли вразрез с традициями и противостояли скучной обыденности работ над материалами. Но, к сожалению, всерьез их никто не воспринимал. А Гриффитс ставил очень интересные вопросы. Почему столь велика разница в прочности различных тел? Почему прочность всех тел не одинакова? Почему вообще материалы имеют какую-то прочность? Почему бы им не быть прочнее? По крайней мере, сколь прочными они "обязаны" быть? До сравнительно недавнего времени все эти вопросы считались либо непостижимыми, либо несостоятельными, либо принадлежащими глупцам.

Теперь-то мы знаем в общих чертах, какой должна быть прочность любого материала и почему далеко не всегда она достигается на практике. Более того, нам в какой-то мере известно, что нужно делать, чтобы повысить прочность материала. Этими знаниями мы прямо или косвенно обязаны Гриффитсу. Ниже в сокращенном и несколько видоизмененном виде я приведу его основные идеи.

Прежде всего мы должны уметь обращаться с понятием энергии, которая представляет собой способность совершать работу. Энергия имеет размерность силы, умноженной на расстояние. Так, если я поднимаю груз весом 2 кг на высоту 1,5 м, то я увеличиваю его потенциальную энергию на 3 кгм. Эта энергия (она исходит от моего обеда, который в свою очередь исходит от солнца, и т.д.) может быть преобразована в любую из форм энергии, но не может быть уничтожена. Потенциальная энергия представляет собой очень удобный способ "консервирования" энергии. Когда это потребуется, она может пройти через различные последовательные преобразования из одной формы в другую. Эти переходы могут быть очень наглядными, при этом может быть рассчитан баланс энергии.

Накопленная, или потенциальная, энергия поднятого груза прежде использовалась, например, для привода настенных часов. Сейчас в большинстве часовых механизмов запас энергии содержится в пружине. Выбор способа накопления энергии - всего лишь вопрос удобства, а не принципа [21] Часовая пружина представляет собой стальную ленту, свернутую для экономии места в спираль, подобно рулетке. По существу, это балка. Когда часы заводят, число витков спирали увеличивается, а так как общая длина ленты не изменяется, то каждый ее участок оказывается более изогнутым. Поскольку это балка, во всех ее точках действует либо растяжение, либо сжатие (см. главу 1). Кстати, по мере раскручивания пружины энергия, получаемая с одного оборота, уменьшается. Поэтому часовщики в свое время вынуждены были изобрести устройство, называемое улиткой (или фузией): это коническая катушка, на которую наматывается, поддерживая силу привода постоянной, ведущая цепь. Вот почему прежде предпочитали привод от груза: энергия груза на один сантиметр веса одинакова и в нижнем, и в верхнем положениях. (в русской литературе для улитки обычен несколько иной синоним - фузея - V.V. ) . Энергия деформированного тела очень напоминает энергию поднятого груза, следует лишь иметь в виду, что в процессе деформирования сила изменяется, в то время как вес практически не зависит от высоты подъема, если она, конечно, не слишком велика. Согласно закону Гука при деформации напряжение в материале растет линейно. Следовательно, если исходное напряжение было равно нулю, то энергия деформации в единице объема выражается формулой 1/2·(Напряжение·Деформация)

То, что энергия деформации вполне обычная тривиальная вещь, отлично демонстрируется стрелками-лучниками. Между прочим, поэтому следует держаться в стороне от натянутых тросов. Кинетическая энергия причаленного судна, то есть энергия движения судна, качающегося на волнах у причала, преобразуется в энергию деформации чалки. Если чалка обрывается, то эта энергия переходит в кинетическую энергию каната, которая может оказаться слишком большой для стоящего на ее пути человека.

Следовательно, все тела в нагруженном состоянии обладают энергией деформации, и эта энергия тем или иным способом может быть преобразована в любую другую форму энергии, чаще всего - в тепло. Но дети всегда ухитряются узнать, что энергию растянутой резины можно использовать для разрушения, например стекла. Не знаю, может быть, именно такие ассоциации привели Гриффитса к мысли о разрушении как об энергетическом процессе.

Когда разрушается хрупкий материал, в области разрушения образуются две новые поверхности, которые до этого не существовали, и идея Гриффитса заключалась в том, что нужно связать энергию новых поверхностей с энергией деформации тела перед разрушением. Теперь давайте разберемся, что же такое поверхностная энергия. Мы знаем, что энергия имеет много форм - тепловая, электрическая, энергия деформации и т.д., - но то, что поверхность твердого тела обладает энергией только в силу самого существования своего как поверхности, - это становится ясно не сразу.

Наблюдая дождевые капли, пузыри, насекомых, шагающих по поверхности воды, мы легко приходим к выводу, что вода, как и другие жидкости, имеет поверхностное натяжение. Поверхностное натяжение - это совершенно реальная физическая сила, которая может быть измерена без особого труда. Следовательно, если площадь поверхности жидкости увеличивается, то производится работа по преодолению этой силы, и энергия накапливается в новой поверхности. Подсчитывая баланс энергии, мы должны учитывать поверхностную энергию так же, как и другие виды энергии. Например, когда комар садится на воду, поверхность прогибается под его лапками; следовательно, площадь поверхности и ее энергия увеличиваются. Комар проваливается до тех пор, пока увеличение поверхностной энергии воды не сравняется с уменьшением потенциальной энергии насекомого, дальше комар не тонет, и это его, наверное, вполне устраивает.

Жидкость стремится по возможности уменьшить свою поверхностную энергию. К примеру, тонкая струя жидкости из только что закрытого крана, достигнув определенного диаметра, непременно разобьется на отдельные капли с меньшей поверхностной энергией. Когда жидкость замерзает, молекулярный характер ее поверхности изменяется мало, и энергия поверхности сохраняется, хотя поверхностное натяжение уже не в силах изменить форму твердой частицы, округлив ее подобно капле. В большинстве твердых тел межатомные связи прочнее и жестче, чем в обычных жидкостях, соответственно и величины поверхностной энергии у них в 10–20 раз выше [22] Поверхностная энергия воды составляет примерно 77 эрг/см 2 . У конструкционных материалов эта величина порядка 1000 эрг/см 2 . Поверхностная энергия алмаза равна 5400 эрг/см 2 . (Поверхностное натяжение в дин/см численно равно поверхностной энергии в эрг/см 2 .) . Не замечаем же мы поверхностного натяжения в твердых телах не потому, что оно слабое, а потому, что твердые тела слишком жестки, чтобы их форма заметно искажалась силами поверхностного натяжения.

Читать дальше
Тёмная тема
Сбросить

Интервал:

Закладка:

Сделать


Джеймс Гордон читать все книги автора по порядку

Джеймс Гордон - все книги автора в одном месте читать по порядку полные версии на сайте онлайн библиотеки LibKing.




Почему мы не проваливаемся сквозь пол отзывы


Отзывы читателей о книге Почему мы не проваливаемся сквозь пол, автор: Джеймс Гордон. Читайте комментарии и мнения людей о произведении.


Понравилась книга? Поделитесь впечатлениями - оставьте Ваш отзыв или расскажите друзьям

Напишите свой комментарий
x