Михаил Левицкий - Карнавал молекул. Химия необычная и забавная
- Название:Карнавал молекул. Химия необычная и забавная
- Автор:
- Жанр:
- Издательство:Литагент Альпина
- Год:2019
- Город:Москва
- ISBN:978-5-0013-9101-2
- Рейтинг:
- Избранное:Добавить в избранное
-
Отзывы:
-
Ваша оценка:
Михаил Левицкий - Карнавал молекул. Химия необычная и забавная краткое содержание
В книге рассказано о некоторых драматичных, а, порой, забавных поворотах судьбы как самих открытий, так и их авторов. Кроме того, читатель потренируется в решении занятных задач, что особенно приятно, когда рядом помещена подсказка, а потом и сам ответ.
В отличие от учебника в книге нет последовательного изложения основ химии, поэтому ее можно читать, начиная с любой главы.
Карнавал молекул. Химия необычная и забавная - читать онлайн бесплатно ознакомительный отрывок
Интервал:
Закладка:

Простое взамен громоздкого
Очистка металлов от примесей всегда была делом трудоемким, и потому химики постоянно искали простые и удобные способы, позволяющие отделять металл от загрязнений.
Основной источник металлического никеля – сульфидные руды, в которых содержатся также примеси сульфидов кобальта и железа (CoS, FeS и др.). Ранее для получения никеля в промышленности поступали следующим образом: медно-никелевую руду вместе с флюсами (веществами, снижающими температуру плавления) плавили в электропечах. Железо отделяли, окисляя его, т. е. продувая расплав воздухом в специальных емкостях (конвертерах). Оставшийся расплав сульфидов никеля, меди и кобальта охлаждали, мелко измельчали и направляли на флотацию (разделение твердых частиц, основанное на их различной смачиваемости водой, содержащей добавки вспенивателей). Таким способом отделяли медные и кобальтовые сульфиды от никелевых. Далее полученный концентрат сульфида никеля обжигали, при этом получали оксид никеля NiO, а сера удалялась в виде газообразного оксида. Затем полученный оксид никеля восстанавливали в электродуговых печах, и в результате получали металлический никель. Как видим, процесс громоздкий и трудоемкий.
Карбонил никеля открыл другой, более короткий путь. Он основан на том, что Ni(CO) 4 – необычайно летучее вещество (t кип.= 43 °С). После обработки смеси сульфидов монооксидом углерода СО под давлением образуется карбонил никеля, который можно легко отогнать (карбонилы остальных металлов гораздо более труднолетучи) (рис. 4.12).

При последующем нагревании до 180 °С полученный карбонил легко разлагается, образуя металлический никель высокой степени чистоты.
Транспортные реакции в промышленности и у нас дома
Итак, основной замысел – очистка металла путем перевода его в летучее соединение. Естественно, эту идею постарались применить и к другим металлам. Необходимо было, чтобы металлы сравнительно легко образовывали летучие соединения. Удачные варианты были найдены: при пониженных температурах иод легко реагирует с такими металлами, как титан, цирконий, гафний и др. Полученные иодиды можно легко отогнать, затем при нагревании они разлагаются, образуя чистый металл. Освободившийся иод может быть вновь направлен на взаимодействие с очередной порцией очищаемого металла. Реакции такого типа называют транспортными, роль транспортного средства играет, естественно, иод (рис. 4.13).
Способности иода в роли «перевозчика» широки: он реагирует при 1100 °С с элементарным кремнием, образуя летучий SiI 4(рис. 4.14).

На этом превращения не завершаются, при высокой температуре более устойчивы соединения кремния со степенью окисления два, поэтому получившийся SiI 4реагирует с имеющимся элементарным кремнием, образуя SiI 2(рис. 4.15).

Как и в случае с алюминием, окислительно-восстановительная реакция проходит между атомами кремния, только в обратном, нежели у алюминия, направлении: из Si 4+и Si 0получается Si 2+.
Если образовавшийся газообразный SiI 2направить в холодную зону, то он окажется в условиях, где более устойчивы соединения Si 4+, в результате пойдет реакция, обратная той, что показана выше (рис. 4.16).

В холодной зоне останется элементарный кремний (естественно, высокочистый), а SiI 4можно вновь направить в горячую зону. Потребность в чистом кремнии высока, его используют для изготовления компьютерных процессоров и солнечных батарей.
Чем отличаются процессы очистки металлов и кремния? В конечном итоге чистые металлы получают при термическом разложении летучих иодидов, а элементарный кремний, наоборот, образуется в охлаждаемой зоне. Впрочем, для кремния существует и вторая возможность. Если получившийся при 1100 °С SiI 2нагреть еще выше (до 1400 °С), он распадется на Si и I 2.

Пожалуй, наиболее эффектное применение транспортной реакции реализовано в лампах накаливания. В вакуумированной ламповой колбе раскаленная вольфрамовая спираль постепенно испаряется и в итоге перегорает. На внутренней стенке такой лампы иногда можно заметить сероватый налет испарившегося вольфрама. Если заранее ввести внутрь стеклянной колбы немного иода, он будет реагировать с осевшим на стенках колбы металлическим вольфрамом, образуя летучий иодид вольфрама. Пары иодида, коснувшись нагретой спирали, разлагаются на вольфрам и иод. Таким образом, вольфрам вновь возвращается на спираль, а иод вовлекается в следующий цикл. В результате срок службы лампы заметно увеличивается. Именно так работают широко известные галогеновые лампы (рис. 4.17).
Краун-эфиры наоборот
Поступать наоборот –
это тоже подражание.
ГЕОРГ ЛИХТЕНБЕРГДля многих понятий существуют термины, обозначающие противоположное действие, на это указывает приставка анти: антифриз, антиоксидант, антидепрессант, антидетонатор и т. д. Химиков всегда привлекал поиск веществ, действие которых противоположно тому, которое уже известно. Всегда ли возможно достичь обратного эффекта и не окажется ли он лишенным смысла?
Поскольку далее речь пойдет о том, как поместить атом внутри молекулярной конструкции, попробуем решить похожую задачу. В некоем городе правила метрополитена содержат пункт: провозить предметы, длина, ширина или высота которых превышает 1 м, запрещено. Тем не менее догадливому лыжнику удалось провезти лыжи длиной 1,7 м. Как ему это удалось? Сразу отложим в сторону неприемлемые варианты: лыжи не складные и не сгибаемые. Если самостоятельно решить задачу не удастся, смотрите ответ (он перевернут и дан в зеркальном отражении).

А теперь перейдем к размещению катиона металла внутри кольцевой молекулы.
Краун-эфиры без «анти»
Вначале кратко расскажем о самих краун-эфирах. Они были впервые получены в 1967 г. Ч.Д. Педерсеном, лауреатом Нобелевской премии 1987 г. по химии («За разработку и применение молекул со структурно-специфическими взаимодействиями с высокой селективностью»). Синтезированные им соединения представляли собой циклы разного размера, собранные из чередующихся атомов кислорода и мостиков – СН 2–СН 2– (рис. 4.18).
Читать дальшеИнтервал:
Закладка: