Ник Лэйн - Кислород. Молекула, изменившая мир
- Название:Кислород. Молекула, изменившая мир
- Автор:
- Жанр:
- Издательство:неизвестно
- Год:2016
- ISBN:нет данных
- Рейтинг:
- Избранное:Добавить в избранное
-
Отзывы:
-
Ваша оценка:
Ник Лэйн - Кислород. Молекула, изменившая мир краткое содержание
Ник Лэйн ответит на вопрос: кислород — наш единственный шанс на выживание или самый худший враг?
Кислород. Молекула, изменившая мир - читать онлайн бесплатно полную версию (весь текст целиком)
Интервал:
Закладка:
Количество 87Sr в океане зависит от скорости эрозии земной коры на континентах. Оледенения и образование гор усиливают эрозию и способствуют попаданию стронция в реки, а затем и в океаны. Как и 86Sr, 87Sr тоже включается в известняк. Соотношение 86Sr и 87Sr в известняке зависит от их относительного содержания в морской воде. В периоды сильной континентальной эрозии больше 87Sr попадает в океаны и включается в морские отложения. Таким образом, соотношение двух изотопов стронция и известняках позволяет оценить скорость эрозии в период формирования этих отложений. В соответствии с данными Алана Кауфмана из Университета Мэриленда и его коллег Стейна Якобсена и Эндрю Нолла из Гарварда отношение 87Sr к 86Sr в морских карбонатных отложениях начало расти сразу после окончания ледниковых периодов, что указывает на высокую скорость эрозии. Кроме того, корреляция между соотношением изотопов углерода (захоронено больше 12С) и изотопов стронция (больше 87Sr в горных породах) указывает на то, что высокой скорости эрозии действительно соответствует высокая скорость захоронения органических веществ. И это приводит к повышению содержания кислорода в воздухе.
Два независимых метода подтверждают рост концентрации кислорода. Первый метод основан на анализе изотопов серы в пиритах — сильфидах железа (FeS 2). О возможностях этого метода впервые сообщил Дональд Кенфилд в 1996 г. в журнале Nature . В главе 3 мы уже обсуждали результаты Кенфилда, основанные на анализе поведения сульфатредуцирующих бактерий, восстанавливающих сульфат до сероводорода. В данном случае он применил свой метод для анализа более поздних событий. Тогда Кенфилд работал с Андреасом Теске в Институте морской микробиологии Макса Планка в Бремене. Они показали, что поворотный момент в использовании серы бактериями произошел вскоре после завершения последнего глобального оледенения. Дo этого на протяжении 2 млрд лет под действием сульфатредуцирующих бактерий образовывался осадок сульфидов железа, содержавших примерно на 3% больше изотопа 32S, чем в образцах абиотического происхождения. Но вдруг после завершения последнего оледенения около 590 млн лет назад этот показатель вырос до 5%. И так продолжается до сих пор, так что данный показатель фактически является признаком современной экосистемы. Что же произошло?
Показатель 3% объяснить легко. Сульфатредуцирующие бактерии превращают сульфат в сероводород в одну стадию. В результате этого простого процесса содержание изотопа 32S в сероводороде повышается примерно на 3%. Далее обогащенный сероводород может взаимодействовать с железом с образованием пиритов. Однако обогатить сероводород изотопом 32S на 5% в одну стадию нельзя. Это возможно только при реутилизации сырьевых материалов: таким же образом можно сконцентрировать углекислый газ, если дышать в пластиковом пакете.
Для реутилизации сероводорода нужен кислород. Процесс заключается в следующем. Сульфатредуцирующие бактерии обитают в неподвижном иле на дне моря. Выделяемый ими сероводород преодолевает толщу воды и реагирует с растворенным в воде кислородом. Между анаэробной придонной зоной и аэробной поверхностной зоной возникает смешанная зона. В наше время в этой зоне обитает множество изобретательных бактерий, способных утилизировать серу. Некоторые из них окисляют сероводород, производя элементарную серу, другие вновь превращают элементарную серу в смесь сульфата и сероводорода. Поскольку этот сульфат образуется биологическим путем, он обогащен изотопом 32S. Сульфатредуцирующие бактерии используют регенерированный биологическим способом сульфат и опять превращают его в сероводород. В результате каждого цикла происходит обогащение сульфатов и сульфидов изотопом 32S. В конечном итоге они обогащаются примерно на 5%. Это некое равновесное состояние. Сероводород реагирует с железом с образованием пиритов. Тяжелые пириты осаждаются на дно, поддерживая равновесие в системе.
Кенфилд и Теске считают, что экосистемы «современного» типа, которым нужен современный уровень кислорода, начали развиваться после завершения последней фазы «Земля-снежок». Они прибегают к помощи метода молекулярных часов, который подтверждает, что в это время выросло количество видов бактерий, перерабатывающих серу. Таким образом, Кенфилд и Теске считают, что увеличение содержания кислорода в воздухе практически до современного уровня началось в конце докембрийского периода.
Второй метод, подтверждающий повышение концентрации кислорода в воздухе, основан на анализе так называемых редкоземельных элементов. Соотношение этих следовых элементов, таких как церий. в морских карбонатах зависит от их соотношения в морской воде в момент образования отложений, которое, в свою очередь, определяется их растворимостью. Растворимость многих элементов связана с содержанием кислорода. Мы уже знаем, что в присутствии кислорода растворимость соединений железа снижается, а соединений урана — повышается. И если мы проследим за изменением относительного содержания различных элементов в горных породах (каких-то становится больше, каких-то меньше), мы сможем оценить степень насыщенности океанов кислородом в момент формирования этих пород. По данным Грэхэма Шилдса из Университета Оттавы (Канада) и Мартина Брейзиера из Оксфорда, в морских отложениях карбонатов, образовавшихся на территории современной Монголии во время последнего глобального оледенения и сразу после него, отразился сдвиг распределения редкоземельных элементов, свидетельствующий о повышении содержания кислорода в океане.
Уникальное сочетание данных — изотопные подписи углерода, серы, стронция, а также распределение редкоземельных элементов — свидетельствует о повышении концентрации кислорода в атмосфере. По-видимому, сильнейшие изменения климата за 160 млн лет глобального оледенения привели к росту концентрации кислорода практически до современного уровня. Но в это же время после перерыва длительностью около миллиарда лет вновь начинают появляться полосатые железные горы, что говорит о наличии в океане большого количества растворенного железа. Это означает, что в глубинах океана кислорода было мало.
Итак, после последнего великого оледенения (варангерского оледенения, закончившегося 590 млн лет назад) в воздухе и в поверхностных водах оказалось много кислорода (таким воздухом мы могли бы дышать), но в глубинах океана по-прежнему было мало кислорода и много сероводорода, как в современном Черном море. Затем вдруг всего за несколько миллионов лет в этом чудном новом мире появляются первые крупные животные: плавающие на мелководье странные мешки протоплазмы, называемые вендобионтами, и ползающие по дну континентальных шельфов черви. Данное время характеризуется невероятно высоким потенциалом. Странно, но реализация этого потенциала как раз и привела к его быстрому исчерпанию.
Читать дальшеИнтервал:
Закладка: