Ник Лэйн - Кислород. Молекула, изменившая мир

Тут можно читать онлайн Ник Лэйн - Кислород. Молекула, изменившая мир - бесплатно полную версию книги (целиком) без сокращений. Жанр: sci-chem, год 2016. Здесь Вы можете читать полную версию (весь текст) онлайн без регистрации и SMS на сайте лучшей интернет библиотеки ЛибКинг или прочесть краткое содержание (суть), предисловие и аннотацию. Так же сможете купить и скачать торрент в электронном формате fb2, найти и слушать аудиокнигу на русском языке или узнать сколько частей в серии и всего страниц в публикации. Читателям доступно смотреть обложку, картинки, описание и отзывы (комментарии) о произведении.
  • Название:
    Кислород. Молекула, изменившая мир
  • Автор:
  • Жанр:
  • Издательство:
    неизвестно
  • Год:
    2016
  • ISBN:
    нет данных
  • Рейтинг:
    5/5. Голосов: 11
  • Избранное:
    Добавить в избранное
  • Отзывы:
  • Ваша оценка:
    • 100
    • 1
    • 2
    • 3
    • 4
    • 5

Ник Лэйн - Кислород. Молекула, изменившая мир краткое содержание

Кислород. Молекула, изменившая мир - описание и краткое содержание, автор Ник Лэйн, читайте бесплатно онлайн на сайте электронной библиотеки LibKing.Ru
С тех пор как в 1770-х годах кислород был открыт, ученые горячо спорят о его свойствах. Этот спор продолжается по сей день. Одни объявляют кислород эликсиром жизни — чудесным тонизирующим препаратом, лекарством против старения, косметическим средством и перспективным методом лечения. Другие воспринимают его как огнеопасное вещество и страшный яд, который в конце концов уничтожит нас всех.
Ник Лэйн ответит на вопрос: кислород — наш единственный шанс на выживание или самый худший враг?

Кислород. Молекула, изменившая мир - читать онлайн бесплатно полную версию (весь текст целиком)

Кислород. Молекула, изменившая мир - читать книгу онлайн бесплатно, автор Ник Лэйн
Тёмная тема
Сбросить

Интервал:

Закладка:

Сделать

Теломеры — характерный пример биологической хитрости: они нужны по той причине, что мы унаследовали механизм репликации ДНК от бактерий, у которых хромосомы кольцевые, тогда как хромосомы эукариот не кольцевые, а линейные. Механизм репликации ДНК таков, что не позволяет синтезировать концы линейных молекул ДНК. В результате при каждом копировании хромосомы укорачиваются. Решение? Хитрость. Эволюция не стала изобретать новый механизм репликации ДНК, но добавила к концам каждой хромосомы кусочки некодирующей ДНК, с которыми могут связываться ферменты репликации. Потеря этих участков не имеет значения до тех пор, пока сохраняется информационное содержимое всей хромосомы, но потом хромосомы «разлохмачиваются», и клетки перестают делиться.

Итак, теломеры — это дополнительные некодирующие концевые фрагменты ДНК. Келвин Харли показал, что в культуре клеток человеческих фибробластов они постепенно укорачиваются. При каждом делении клетки происходит репликация ДHK, и при каждом делении теряется кусочек теломерной последовательности. Человеческие фибробласты полностью теряют теломеры максимум за 70 делений. Таким образом, укорочение теломерных последовательностей — своеобразные биологические часы, определяющие максимальное число клеточных делений. Это число определяется исходной длиной теломерных последовательностей и скоростью их отщепления; но в целом чем больше исходная длина теломерной последовательности, тем большее число делений переживает клетка.

Так как же выживают опухолевые клетки? По-видимому, они используют фермент, названный теломеразой , который восстанавливает теломеры, так что их длина не уменьшается [76] В 2009 г. Нобелевская премия по физиологии и медицине была присуждена австралийке Элизабет Блэкберн и американцам Кэрол Грейдер и Джеку Шостаку за открытие защитных механизмов хромосом от концевой недорепликации с помощью теломер и теломеразы. — Примеч. пер. . Теломераза активна в большинстве опухолевых клеток. Никакого волшебства тут нет. Ген теломеразы присутствует во всех клетках нашего тела, но в норме отключен. В организме человека он обычно активен только в стволовых клетках — неспециализированных клетках, которые могут делиться и дифференцироваться с образованием новых тканей, а также в половых клетках , смысл существования которых заключается в воспроизведении. В 1997 г. исследователи из компании Geron Corporation клонировали часть гена теломеразы. В результате введения этого гена вместе с промотором, обеспечивающим активацию теломеразы, соматические человеческие клетки в культуре стали бессмертными. Популяция клеток получила возможность делиться бесконечно, но вела себя не так, как популяция опухолевых клеток, формирующих объемные образования даже при росте на чашке Петри. Эти результаты были опубликованы в 1998 г. в журнале Science и вызвали всеобщее возбуждение — вот он, секрет вечной молодости! Продукт одного-единственного гена может предотвратить старость или хотя бы репликативное старение соматических клеток.

Ажиотаж вокруг теломеразы связан с извечной мечтой человека о бессмертии. Гильгамеш пришел бы в восторг. Молекулярные биологи, сосредоточенные на анализе геномов и защищающие идею программированного старения, торжествовали. Если продолжительность жизни определяется длиной участка ДНК, следовательно, длина этого участка каким-то образом «запрограммирована» для обеспечения нужной продолжительности жизни, по-видимому, во благо всего вида. Эволюционные биологи смотрят на проблему иначе. Как мы обсуждали в предыдущей главе, если с возрастом селективное давление ослабевает, следовательно, нет никакой программы старения. В таком случае функция теломерных последовательностей в чем-то другом. Контроль старения клеток в культуре, возможно, является артефактом, не связанным с их функцией в организме.

Эти диаметрально противоположные варианты трактовки одного и того же наблюдения указывают на важнейшую роль теории в науке. Факты мало что означают, если их не интерпретировать в рамках какой-то общей теории, но именно неожиданные факты, не укладывающиеся в рамки теории, позволяют разрушать догмы. Однако в случае теломеразы никакой радикальной интерпретации не требуется. Теломераза — необходимый, но не достаточный элемент, позволяющий клеткам с линейными хромосомами делиться бесконечно. Она не имеет прямого отношения к старению тела.

Многие клетки в организме взрослого человека вообще не делятся, и, следовательно, длина теломерных последовательностей их хромосом не уменьшается. Им не нужна теломераза, поскольку теломеры не исчезают. Головной мозг, сердце, основные артерии и скелетные мышцы в основном состоят из специализированных клеток, которые не делятся и редко заменяются новыми. В головном мозге столетнего человека есть нервные клетки (нейроны), возраст которых составляет 100 лет. Мы еще не до конца представляем себе все механизмы работы мозга, но мы точно знаем, что он использует широкую сеть нервных связей, формирующихся на протяжении всей нашей жизни. Мы начинаем жить, имея около 100 млрд нейронов, между которыми за всю жизнь формируется около 200 миллионов миллионов связей. Невозможно представить, как вся эта фантастическая сеть может воспроизводиться путем замены старых нейронов новыми, которые должны повторять точные пространственные связи отмерших клеток. Если эти связи организуются как-то иначе, изменится наше сознание и наши воспоминания. Считается, что в мозге некоторых певчих птиц, которые каждый год поют новую песню, происходит замена некоторых нейронов; что-то похожее происходило бы и с нами. Возможно, мы смогли бы жить вечно, но, чтобы осознать это, мы должны были бы оставлять записи. Таким образом, структура человеческого тела не предназначена для вечной жизни, если только мы не найдем способа замены изношенных нейронов, но пока это относится к области научной фантастики.

Теломераза активна в тех клетках, которые должны делиться регулярно, в частности в стволовых клетках и в клетках, производящих сперматозоиды. С помощью этого фермента такие клетки решают проблему укорочения теломерных последовательностей. Даже циркулирующие иммунные клетки, которые в покое не производят теломеразу, начинают ее производить при пролиферации под действием бактерий. Другими словами, если иммунным клеткам предстоит несколько циклов деления, они получают необходимые теломеры. Некоторые типы эпителиальных клеток, такие как клетки почек и печени, а также фибробласты тоже делятся только при определенных обстоятельствах. В этих клетках нет теломеразы, и их продолжительность жизни, по-видимому, ограничена пределом Хейфлика, но мы не знаем, достигается ли он когда-нибудь. Фибробласты пожилых доноров обычно способны делиться еще 20 или 50 раз до появления признаков старения и отмирания. Понятно, что в организме они никогда не достигают своего репликативного предела. Так что теломеразы у них нет по той причине, что она им не нужна.

Читать дальше
Тёмная тема
Сбросить

Интервал:

Закладка:

Сделать


Ник Лэйн читать все книги автора по порядку

Ник Лэйн - все книги автора в одном месте читать по порядку полные версии на сайте онлайн библиотеки LibKing.




Кислород. Молекула, изменившая мир отзывы


Отзывы читателей о книге Кислород. Молекула, изменившая мир, автор: Ник Лэйн. Читайте комментарии и мнения людей о произведении.


Понравилась книга? Поделитесь впечатлениями - оставьте Ваш отзыв или расскажите друзьям

Напишите свой комментарий
x