Ник Лэйн - Кислород. Молекула, изменившая мир

Тут можно читать онлайн Ник Лэйн - Кислород. Молекула, изменившая мир - бесплатно полную версию книги (целиком) без сокращений. Жанр: sci-chem, год 2016. Здесь Вы можете читать полную версию (весь текст) онлайн без регистрации и SMS на сайте лучшей интернет библиотеки ЛибКинг или прочесть краткое содержание (суть), предисловие и аннотацию. Так же сможете купить и скачать торрент в электронном формате fb2, найти и слушать аудиокнигу на русском языке или узнать сколько частей в серии и всего страниц в публикации. Читателям доступно смотреть обложку, картинки, описание и отзывы (комментарии) о произведении.
  • Название:
    Кислород. Молекула, изменившая мир
  • Автор:
  • Жанр:
  • Издательство:
    неизвестно
  • Год:
    2016
  • ISBN:
    нет данных
  • Рейтинг:
    5/5. Голосов: 11
  • Избранное:
    Добавить в избранное
  • Отзывы:
  • Ваша оценка:
    • 100
    • 1
    • 2
    • 3
    • 4
    • 5

Ник Лэйн - Кислород. Молекула, изменившая мир краткое содержание

Кислород. Молекула, изменившая мир - описание и краткое содержание, автор Ник Лэйн, читайте бесплатно онлайн на сайте электронной библиотеки LibKing.Ru
С тех пор как в 1770-х годах кислород был открыт, ученые горячо спорят о его свойствах. Этот спор продолжается по сей день. Одни объявляют кислород эликсиром жизни — чудесным тонизирующим препаратом, лекарством против старения, косметическим средством и перспективным методом лечения. Другие воспринимают его как огнеопасное вещество и страшный яд, который в конце концов уничтожит нас всех.
Ник Лэйн ответит на вопрос: кислород — наш единственный шанс на выживание или самый худший враг?

Кислород. Молекула, изменившая мир - читать онлайн бесплатно полную версию (весь текст целиком)

Кислород. Молекула, изменившая мир - читать книгу онлайн бесплатно, автор Ник Лэйн
Тёмная тема
Сбросить

Интервал:

Закладка:

Сделать

Есть и другие данные, подтверждающие общую теорию. Между длиной теломерных последовательностей и продолжительностью жизни разных видов организмов наблюдается весьма слабая корреляция. Мышиные теломеры длиннее человеческих, хотя человек живет в 25 раз дольше мыши. А теломеры разных видов мышей с одинаковой продолжительностью жизни сильно различаются по длине. Интересно, что «нокаутные» мыши, не имеющие гена теломеразы, имеют обычную продолжительность жизни вплоть до третьего поколения, когда они начинают проявлять признаки быстрого старения. Смысл этого наблюдения пока неясен. Наконец, количество клеточных делений, необходимых для формирования тела, не влияет на последующую скорость старения. Чтобы получился слон, клетки слона делятся гораздо большее число раз, чем клетки мыши, чтобы получилась мышь, однако слон живет намного дольше мыши. Короче говоря, приходится признать, что, несмотря на весь ажиотаж, теломераза не откроет нам секрет вечной жизни. Действительно, без этого фермента бесконечная репликация клеток эукариот невозможна из-за особенностей механизма репликации ДНК. Теломераза облегчает деление клеток, как выключатель облегчает освещение комнаты; она оказывает техническую помощь. Но как выключатель не является источником света, так и теломераза не является источником вечной жизни. Почему же теломераза неактивна в эпителиальных клетках? Некоторые считают, что наличие предела числа делений может защищать от рака, но, по-видимому, дело не в этом. Предел Хейфлика очень высок. Представьте себе, что правительство Китая ограничивает рождаемость, не разрешая родителям иметь больше 70 детей. Предел Хейфлика не может предотвратить рак. Наиболее вероятная причина заключается в том, что, как большинство генов в большинстве клеток тела, ген теломеразы отключен по той причине, что в нем нет нужды.

Почему же удается превратить нормальные клетки в бессмертные просто путем введения гена теломеразы? И какое отношение ко всему этому имеют митохондрии? Я стал понимать кое-что несколько лет назад, когда занялся выращиванием культуры клеток почечных канальцев и неделями пропадал в лаборатории. Я взял несколько уроков у людей, работавших с другими типами клеток, и пытался применить их методы для решения моей задачи. Каждый раз мои чашки зарастали паукообразными клетками, которые я принимал за фибропласты, которые очень хорошо живут в культуре, и даже их небольшая примесь может победить любую другую культуру. Я выбрасывал чашки и начинал эксперимент заново, используя более подходящую технологию. Но каждый раз повторялось одно и то же. В конце концов я отправился к специалисту по фибробластам, который посмотрел на мои чашки и рассмеялся: «Это не фибробласты! Я не знаю, что это, возможно, ваши клетки почек, но это не фибробласты!»

Я был потрясен. Я часами разглядывал срезы почек под микроскопом и знал, как они выглядят: густая щеточная кайма, обеспечивающая большую площадь поверхности для всасывания растворенных веществ, и тысячи митохондрий, выстроенных по подобию римских легионеров. Мои же клетки не имели каймы и почти не имели митохондрий. Делать было нечего, и я вернулся к учебникам и статьям. И вновь неожиданность: мои грустные клетки были не чем иным, как клетками почек — именно так они выглядят в клеточной культуре! Я планировал эксперимент, чтобы проверить чувствительность клеток почек к кислороду и возможность их защиты с помощью антиоксидантов. Но когда я прочел небольшую статью, то понял, что клетки почек в культуре вообще не нуждаются в кислороде, они прекрасно существуют за счет анаэробного дыхания. Единственный способ заставить их дышать кислородом — убрать из питательной среды глюкозу и застать их в момент роста, пока они не заняли всю поверхность чашки. Наказанный, но слегка поумневший, я оставил свои эксперименты, поскольку они не отражали реальной ситуации.

Эта история весьма характерна для клеток в культуре: им не нужно много энергии, поэтому им не нужно много митохондрий. На самом деле, это справедливо не только для клеток в культуре, но и вообще для всех клеток с невысокими энергетическими затратами. Удивительно, но к их числу относятся и активно делящиеся клетки, например стволовые или опухолевые: они расходуют значительно меньше энергии, чем клетки, выполняющие специализированную метаболическую функцию. К примеру, клетки мозга, которые составляют лишь 2% массы тела, расходуют 20% всего потребляемого организмом кислорода. Если мозг не снабжается кислородом всего несколько минут, человек теряет сознание. Нейроны не делятся, а вспомогательные глиальные клетки мозга делятся редко, так что весь кислород нужен мозгу для выполнения рутинной метаболической функции. Другие ткани с активным метаболизмом тоже потребляют много кислорода. В каждой клетке печени, почек или сердечной мышцы содержится около 2000 митохондрий, так что в этих клетках практически невозможно разглядеть цитоплазму. Напротив, стволовые клетки, функция которых заключается в пополнении клеточных популяций, например клеток кожи, имеют удивительно мало митохондрий. Аналогичным образом, клетки иммунной системы, такие как лимфоциты, которые после активации тоже начинают активно делиться, практически лишены митохондрий.

В целом существует строгая зависимость между степенью дифференцировки клетки (ее вовлеченностью в решение специфической метаболической задачи) и численностью ее митохондрий. Специализированные клетки имеют множество митохондрий и страдают от последствий — сильного окислительного стресса. Клетки, испытывающие стресс, получают преимущества от повышения устойчивости к стрессу. Вспомните, что защитный эффект ограничения калорийности питания в большей степени проявлялся в долгоживущих клетках тех тканей, которые подвергались наиболее сильному окислительному стрессу, как в мозге, сердце и скелетных мышцах. Именно это, а не теломераза на самом деле обеспечивает бессмертие клеточной популяции. Чтобы выжить, нужно избавиться от митохондрий, как от ненужного балласта. Это и делают опухолевые клетки. По мере размножения опухолевые клетки становятся менее дифференцированными и теряют митохондрии. Они прекрасно живут за счет анаэробного дыхания. Большинство опухолей — плотные тканевые образования с низкой потребностью в кислороде. Более того, для многих опухолей кислород токсичен: радиотерапия может оказаться в три или четыре раза более эффективной при оксигенации опухоли (ее насыщении кислородом). Как часто бывает, существуют подтверждающие правило исключения. Некоторые опухолевые клетки содержат множество митохондрий. В частности, некоторые железистые опухоли (онкоцитомы) и опухоли печени (гепатома Новикова) содержат клетки с огромным количеством митохондрий. Однако при ближайшем рассмотрении выясняется, что эти митохондрии нефункциональны. Таким образом, если клетка содержит активную теломеразу и небольшое число малоактивных митохондрий, она может делиться бесконечно.

Читать дальше
Тёмная тема
Сбросить

Интервал:

Закладка:

Сделать


Ник Лэйн читать все книги автора по порядку

Ник Лэйн - все книги автора в одном месте читать по порядку полные версии на сайте онлайн библиотеки LibKing.




Кислород. Молекула, изменившая мир отзывы


Отзывы читателей о книге Кислород. Молекула, изменившая мир, автор: Ник Лэйн. Читайте комментарии и мнения людей о произведении.


Понравилась книга? Поделитесь впечатлениями - оставьте Ваш отзыв или расскажите друзьям

Напишите свой комментарий
x