Николай Глинка - Общая химия
- Название:Общая химия
- Автор:
- Жанр:
- Издательство:неизвестно
- Год:неизвестен
- ISBN:нет данных
- Рейтинг:
- Избранное:Добавить в избранное
-
Отзывы:
-
Ваша оценка:
Николай Глинка - Общая химия краткое содержание
Учебное пособие предназначено для студентов нехимических специальностей высших учебных заведений. Оно может служить пособием для лиц, самостоятельно изучающих основы химии, и для учащихся химических техникумов и старших классов средней школы.
Легендарный учебник, переведенный на многие языки стран Европы, Азии, Африки и выпущенный общим тиражом свыше 5 миллионов экземпляров.
При изготовлении файла, использован сайт http://alnam.ru/book_chem.php
Общая химия - читать онлайн бесплатно ознакомительный отрывок
Интервал:
Закладка:
Выяснение связи между величиной поляризации и скоростью электродного процесса является важнейшим методом изучения электрохимических процессов. При этом результаты измерений обычно представляют в виде поляризационных кривых — кривых зависимости плотности тока на электроде от величины поляризации. Вид поляризационной кривой того или иного электродного процесса отражает особенности его протекания. Методом поляризационных кривых изучают кинетику и механизм окислительно-восстановительных реакций, работу гальванических элементов, явления коррозии и пассивности металлов, различные случаи электролиза.
Большой вклад в развитие кинетики электродных процессов и теории перенапряжения внес советский ученый А. Н Фрумкин.
Глава X. ДИСПЕРСНЫЕ СИСТЕМЫ. КОЛЛОИДЫ
105. Дисперсное состояние вещества.
Дисперсные системы. Кристаллы любого вещества, например сахара или хлорида натрия, можно получить разного размера — крупные и мелкие. Каков бы ни был размер кристаллов, все они имеют одинаковую для данного вещества внутреннюю структуру — молекулярную или ионную кристаллическую решетку.
При растворении в воде кристаллов сахара и хлорида натрия образуются соответственно молекулярные и ионные растворы. Таким образом, одно и то же вещество может находиться в различной степени раздробленности: макроскопически видимые частицы (>0,2-0,1 мм, разрешающая способность глаза), микроскопически видимые частицы (от 0,2-0,1 мм до 400-300 нм, разрешающая способность микроскопа при освещении белым светом) и отдельные молекулы (или ионы).
- 296 -
Рис. 87. Одно-, двух- и трехмерное диспергирование вещества приводит к образованию пленочно-(а), волокнисто-(б) и корпускулярнодисперсных (в) систем.
Постепенно складывались представления о том, что между миром молекул и микроскопически видимых частиц находится область раздробленности вещества с комплексом новых свойств, присущих этой форме организации вещества.
Представим себе кубик какого-либо вещества, который будем разрезать параллельно одной из его плоскостей, затем полученные пластинки начнем нарезать на палочки, а последние — на кубики (рис. 87). В результате такого диспергирования (дробления) вещества получаются пленочно-, волокнисто- и корпускулярнодисперсные (раздробленные) системы. Если толщина пленок, поперечник волокон или частиц (корпускул) меньше разрешающей способности оптического микроскопа, то они не могут быть обнаружены с его помощью. Такие невидимые в оптический микроскоп частицы называют коллоидными, а раздробленное (диспергированное) состояние веществ с размером частиц от 400-300 нм до 1 нм — коллоидным состоянием вещества.
Дисперсные (раздробленные) системы являются гетерогенными. Они состоят из сплошной непрерывной фазы -дисперсионной среды и находящихся в этой среде раздробленных частиц того или иного размера и формы — дисперсной фазы.
Поскольку дисперсная (прерывная) фаза находится в виде отдельных небольших частиц, то дисперсные системы, в отличие от гетерогенных со сплошными фазами, называют микрогетерогенными, а коллоиднодисперсные системы называют также ультра-микрогетерогонными, чтобы подчеркнуть, что в этих системах граница раздела фаз не может быть обнаружена в световом микроскопе.
- 297 -
Когда вещество находится в окружающей среде в виде молекул или ионов, то такие растворы называют истинными, т. е. гомогенными однофазными растворами.
Обязательным условием получения дисперсных систем является взаимная нерастворимость диспергируемого вещества и дисперсионной среды. Например, нельзя получить коллоидные растворы сахара или хлорида натрия в воде, но они могут быть получены в керосине или в бензоле, в которых эти вещества практически нерастворимы.
Дисперсные системы классифицируют по дисперсности, агрегатному состоянию дисперсной фазы и дисперсионной среды, интенсивности взаимодействия между ними, отсутствию или образованию структур в дисперсных системах.
Количественной характеристикой дисперсности (раздробленности) вещества является степень дисперсности (степень раздробленности, D) — величина, обратная размеру (а) дисперсных частиц:
D = 1 / a
Здесь a равно либо диаметру сферических или волокнистых частиц, либо длине ребра кубических частиц, либо толщине пленок.
Степень дисперсности численно равна числу частиц, которые можно плотно уложить в ряд (или в стопку пленок) на протяжении одного сантиметра. В табл. 21 приведены условно принятые границы размеров частиц систем с различной раздробленностью вещества.
Таблица 21. Классификация корпускулярнодисперсных систем по степени дисперсности
Если все частицы дисперсной фазы имеют одинаковые размеры, то такие системы называют монодисперсными (рис. 88, а и б). Частицы дисперсной фазы неодинакового размера образуют пол и дисперсные системы (рис. 88, в).
- 298 -
С повышением дисперсности все большее и большее число атомов вещества находится в поверхностном слое, на границе раздела фаз, по сравнению с их числом внутри объема частиц дисперсной фазы. Соотношение между поверхностью и объемом характеризует удельная поверхность: S уд= S/V, которая для частиц сферической формы равна
а для частиц кубической формы
где r — радиус шара; d — его диаметр; l — длина ребра куба.
Так, удельная поверхность вещества, раздробленного до микронных кубиков, составляет 6·10 4см -1. При этом из 1 см 3образуется 10 12микронных кубиков с суммарной поверхностью (S = S уд·V), равной 6·10 4см 2(6 м 2). При дальнейшем дроблении 1 см 3вещества до кубиков коллоидной дисперсности, например С длиной ребра l = 4см(10 нм), их число достигает 10 18частиц, суммарная поверхность — 6·10 6см 2(600 м 2), а удельная поверхность — 6·10 6см -1.
Следовательно, с повышением дисперсности вещества все большее значение имеют его свойства, определяемые поверхностными явлениями, т. е. совокупностью процессов, происходящих в межфазовой поверхности. Таким образом, своеобразие дисперсных систем определяется большой удельной поверхностью дисперсной фазы и физико-химическим взаимодействием дисперсной фазы и дисперсионной среды на границе раздела фаз.
Многообразие дисперсных систем обусловлено тем, что образующие их фазы могут находиться в любом из трех агрегатных состояний. При схематической записи агрегатного состояния дисперсных систем первым указывают буквами Г (газ), Ж (жидкость) или Т (твердое) агрегатное состояние дисперсионной среды, затем ставят тире и записывают агрегатное состояние дисперсной фазы.
Читать дальшеИнтервал:
Закладка: