Джон Дрейер - История астрономии. Великие открытия с древности до Средневековья
- Название:История астрономии. Великие открытия с древности до Средневековья
- Автор:
- Жанр:
- Издательство:Литагент Центрполиграф ООО
- Год:2018
- Город:Москва
- ISBN:978-5-9524-5284-8
- Рейтинг:
- Избранное:Добавить в избранное
-
Отзывы:
-
Ваша оценка:
Джон Дрейер - История астрономии. Великие открытия с древности до Средневековья краткое содержание
История астрономии. Великие открытия с древности до Средневековья - читать онлайн бесплатно ознакомительный отрывок
Интервал:
Закладка:
Глава 9
Система Птолемея
Греческая астрономия нашла своего последнего значительного исследователя и учителя в лице Клавдия Птолемея Александрийского, жившего во II веке и. э. Мы почти ничего не знаем о его жизни, ни когда он родился, ни когда умер; время его жизни мы можем установить лишь по тому, что самое раннее наблюдение, о котором он говорит, что сделал его сам, приходится на 11 год Адриана (127 г. н. э.), а его последнее наблюдение – на 150 год н. э. В качестве эпохи своего звездного каталога он принимает 137 год н. э. (первый год Антонина). Как уже говорилось, его основным трудом является «Синтаксис», широко известный под названием «Альмагест», но сводка числовых данных из «Синтаксиса» (с некоторыми расхождениями) также приведена в его небольшой книге «Гипотезы планет» (к которой Прокл составил комментарий) и в надписи, посвященной «Богу Спасителю» (Птолемею Сотеру) и датируемой 10 годом Антонина.
Складывается впечатление, что за 260 лет между Гиппархом и Птолемеем астрономия не добилась никакого прогресса, если исключить труды Посидония. Единственные наблюдения, сделанные, как устанавливает Птолемей, за этот долгий промежуток времени, – это покрытие Плеяд в 92 году до н. э., наблюдавшееся Агриппой в Вифинии, и два покрытия – Спики и р Скорпиона, наблюдавшиеся Менелаем в Риме в 98 году до н. э, но, конечно, это не доказывает, что он не использовал других или, по крайней мере, что никто не вел других наблюдений в течение всего этого периода. Возможно, Птолемей больше полагался на наблюдения Менелая за неподвижными звездами, чем он сам признает [171]. Однако в теоретической астрономии после Гиппарха не происходило абсолютно ничего, пока Птолемей не приступил к завершению своего труда и не оставил потомкам первый полный трактат, охватывающий весь спектр астрономической науки.
В начале своей первой книги Птолемей коротко резюмирует основополагающие принципы астрономии. Небеса представляют собой сферу, вращающуюся вокруг неподвижной оси, что доказывается круговым движением приполярных звезд и тем фактом, что другие звезды всегда восходят и заходят в одних и тех же точках на горизонте. Земля является шаром, расположенным в самом центре небес; если бы это было не так, то одна сторона неба казалась бы ближе к нам, чем другая, и звезды там были бы крупнее; если бы Земля находилась на небесной оси, но ближе к одному полюсу, то горизонт делил бы надвое не экватор, а один из параллельных кругов; если бы она находилась вне оси, то горизонт бы делил эклиптику на неравные части. Земля – не более чем точка в сравнении с небесами, потому что, куда бы на Земле ни отправился наблюдатель, звезды везде представляются глазу одной и той же величины и на одном и том же расстоянии друг от друга. Земля не совершает никакого поступательного движения, во-первых, потому, что должна быть некая фиксированная точка, относительно которой можно определять движения других тел, а во-вторых, потому, что тяжелые тела опускаются к центру космоса, который является центром Земли. А если бы она совершала движение, оно было бы пропорционально большой массе Земли, и потому животные и вещи оказались бы подброшены в воздух. Это также опровергает предположение, высказанное некоторыми, что Земля, будучи неподвижной в пространстве, вращается вокруг своей оси, хотя, как Птолемей признает, весьма упростило бы дело. Таким образом, в своих общих концепциях Птолемей никоим образом не отличался от своих предшественников.
Что касается движения Солнца, то Птолемей удовольствовался теорией Гиппарха. Здесь он допустил огромный промах, поскольку в течение почти трехсот лет прецессия и смещение линии апсид (о чем он не знал) увеличили ошибку в 35′, сделанную Гиппархом, примерно до 5½°. Тропический год у Гиппарха оказался слишком долгим, следовательно, среднее движение – слишком малым, и ошибка за 300 лет (с 147 г. до н. э.) дошла до 76½′, к которым еще можно прибавить максимальную погрешность 22′ в уравнении центра из-за ошибки в значении эксцентриситета, из которого исходил Гиппарх.
Таким образом, ошибка в положении Солнца в таблицах Птолемея может составить около 100′. Поистине очень странно, что Птолемей никак не попытался улучшить точность солнечной теории; возможно, она недостаточно его интересовала по причине отсутствия каких-либо неравномерностей движения, кроме одного; но, разумеется, сложность измерения абсолютной долготы Солнца с любой степенью точности не могла не стать непреодолимым препятствием на пути к вычислению более точных числовых значений солнечной теории.
Но если мы обратимся к теории Луны, окажется, что Птолемей самым существенным образом усовершенствовал работу своего предшественника. Гиппарх лишь использовал эпицикл, движущийся на концентрическом с Землей деференте. Птолемей обнаружил, что нерешенные ошибки этой теории, уже смутно замеченные Гиппархом, достигают максимума в момент квадратуры и совершенно исчезают в сизигии; однако еще одна трудность заключалась в том, что ошибка не повторяется в каждой квадратуре, порой исчезая вовсе, а порой достигая целых 2°39′ – своего максимального значения. В конце концов выяснилось, что, когда Луна оказывалась в квадратуре и в то же время в перигее или апогее эпицикла, так что уравнение центра было равно нулю, местоположение Луны прекрасно согласовывалось с теорией Гиппарха, но при этом ошибка оказывалась наибольшей всякий раз, когда уравнение центра достигало максимума в момент квадратуры. Таким образом, действие второго неравенства всегда увеличивало абсолютное значение первого, особенно в квадратурах. Из этого следовал очевидный вывод, что радиус эпицикла имеет переменную длину, большую в квадратуре, чем в сизигии. Поскольку нельзя было предположить, что изменяется длина радиуса, изменяться должно было расстояние от поверхности Земли, чтобы она могла появляться под разными углами в разное время; другими словами, центр эпицикла должен был двигаться по эксцентру, но так, чтобы угловая скорость была равномерной, и не относительно центра круга, а относительно Земли.

Но в то же время предполагается, что линия, проходящая через центр и апогей эксцентра, вращается в попятном направлении вокруг Земли, так что угол, который она образует с линией от Земли до центра эпицикла, угол АТВ, равнялся удвоенной элонгации Луны от Солнца, составляя 180° в первой и последней четверти [172]. Таким образом, расстояние до В от Земли Т будет наибольшим в сизигии (фактически таким же, каким оно было бы по теории Гиппарха) и наименьшим в квадратуре. Второе неравенство происходит по причине того, что эпицикл не находится в том положении, в котором находился бы, если бы двигался по концентрическому кругу, и она равна углу между линиями, проведенными от Земли до двух местоположений Луны в соответствии с двумя теориями. Этот угол равен нулю в сизигии, так как центры эпицикла и эксцентра (В и С) находятся на одной линии с Землей и по одну сторону от нее, в то время как эпицикл лежит именно там, где должен находиться по теории Гиппарха. В квадратуре центры находятся на противоположных сторонах от Земли, и потому эпициклы, согласно двум теориям, наиболее удалены друг от друга. Если, однако, в это время Луна будет находиться в перигее или апогее эпицикла, он будет расположен на линии CD , а угол, представляющий второе неравенство, все равно будет равен нулю; в то время как наибольшего значения (2°39′) он достигнет, если линия, соединяющая Луну с В , будет находиться под прямым углом к этой линии, то есть когда аномалия Луны составит 90° или 270°. Исходя из максимального значения суммы двух неравенств 740′, с помощью простого вычисления получаем СТ: ТА = 49,7: 10,3.
Читать дальшеИнтервал:
Закладка: