Вадим Романов - Прикладные аспекты аварийных выбросов в атмосферу
- Название:Прикладные аспекты аварийных выбросов в атмосферу
- Автор:
- Жанр:
- Издательство:Физматкнига
- Год:2006
- Город:Москва
- ISBN:978-5-89155-166-2
- Рейтинг:
- Избранное:Добавить в избранное
-
Отзывы:
-
Ваша оценка:
Вадим Романов - Прикладные аспекты аварийных выбросов в атмосферу краткое содержание
Книга посвящена проблемам загрязнения окружающей среды при авариях промышленных предприятий и объектов разного профиля и имеет, в основном, обзорный справочный характер.
Изучается динамика аварийных турбулентных выбросов при наличии атмосферной диффузии, характер расширения турбулентных струйных потоков, их сопротивление в сносящем ветре, эволюция выбросов в реальной атмосфере при наличии инверсионных задерживающих слоев.
Классифицируются и анализируются возможные аварии с выбросами в атмосферу загрязняющих и токсичных веществ в газообразной, жидкой или твердой фазах, приводятся факторы аварийных рисков.
Рассмотрены аварии, связанные с выбросами токсикантов в атмосферу, описаны математические модели аварийных выбросов. Показано, что все многообразие антропогенных источников загрязнения атмосферного воздуха при авариях условно может быть разбито на отдельные классы по типу возникших выбросов и характеру движения их вещества. В качестве источников загрязнений рассмотрены пожары, взрывы и токсичные выбросы. Эти источники в зависимости от специфики подачи рабочего тела в окружающее пространство формируют атмосферные выбросы в виде выпадающих на поверхность земли твердых или жидких частиц, струй, терминов и клубов, разлитий, испарительных объемов и тепловых колонок. Рассмотрены экологические опасности выбросов при авариях и в быту.
Книга содержит большой иллюстративный материал в виде таблиц, графиков, рисунков и фотографий, который помогает читателю разобраться в обсуждаемых вопросах. Она адресована широкому кругу людей, чей род деятельности связан преимущественно с природоохранной тематикой: инженерам, научным работникам, учащимся и всем тем, кто интересуется экологической и природозащитной тематикой.
Прикладные аспекты аварийных выбросов в атмосферу - читать онлайн бесплатно ознакомительный отрывок
Интервал:
Закладка:

Найдем теперь относительную (относительно геометрической высоты) ошибку в определении верхней границы облака. Из соотношения (3.47) получаем:

Из прямоугольных треугольников МОЕ находим

Подставив соотношение (3.58) в формулу (3.55), получаем окончательное выражение для относительной ошибки в определении верхней граница сферического приподнятого выброса:

Аналогично находится относительная ошибка в определении нижней границы выброса. Получаем:

На графике рис. 3.14 представлено изменение относительной ошибки в определении вертикального размера приподнятого сферического выброса в зависимости от угла β для различных полууглов наблюдения α.
Как следует из этих графиков угол возвышения выброса над местностью β существенно влияет на величину . Еще большее влияние на ошибку в определении высоты выброса оказывает величина полуугла его наблюдения α. Для α > 20 0h превышает 20 % для любых значений угла β.

Рис. 3.13. Схема для расчета ненаблюдаемых с земли и реальных размеров сферического приподнятого выброса.
Оптимальное соотношение углов α и β, обеспечивающее возможность четкого наблюдения деталей выброса и не более чем десятипроцентную ошибку в определении его высотного размера является β ≈ 15° и α ≈10°. Для нахождения видимых геометрических параметров наземного сферического выброса следует в полученных нами выражениях перейти к пределу при β → 0. Получаем для дефектов вертикальных видимых размеров следующие выражения, (т. к. tg α = R / X):

Как следует из формулы (3.62) для наземного выброса его нижняя граница определяется точно.
Видимый вертикальный размер облака H наземн видзапишется так:


Рис. 3.14. Изменение относительной ошибки в определении вертикального размера приподнятого сферического выброса в зависимости от угла над местностью β для различных полууглов наблюдения выброса α.

Рис. 3.15. Изменение относительной ошибки в определении вертикального размера выброса в зависимости от полуугола его наблюдения.
Относительную ошибку в определении вертикального размера облака находим из соотношения

Как видно из анализа соотношения (3.55) при β → 0 относительная ошибка в определении верхней границы облака H наземн в для наземного сферического выброса в точности равна относительной ошибке визуального определения вертикального размера облака, т. е.

Как следует из этого графика при α > 20 0ошибка в определении высоты выброса превосходит 10 % и резко возрастает с увеличением полуугла наблюдения α. На практике для уменьшения ошибки в определении вертикального размера облака следует его наблюдение вести на относительно больших удалениях.
3.8. Высоты подъемов выбросов в атмосфере
Как было показано в главе 1, одним из основных параметров в рамках любой математической моде-|ли расчета концентраций загрязняющей примеси является высота вторичного атмосферного источника — фактически высота выброса в месте потери им динамической индивидуальности.
В большинстве современных разработок авторы пытаются использовать аналитические выражения для этого параметра, однако практика применения подобных формул имеет слишком малую область корректного использования в отношении как к тепловой мощности источника, так и к метеопараметрам.
Кроме того, часто путают динамический подъем выбросов с тепловым всплытием их разрушившихся объемов. Ошибочно считают, что тепловой подъем дает искомый результат, после чего наступает фаза атмосферной диффузии.
За границу струи, например, предлагается [136] принять изолинию однопроцентной относительной избыточной температуры.
Не всегда имеются и достаточно точные определения самого понятия подъема выброса. Например, применительно к струям факельного типа за такую высоту принимается [137,138] высоту струи, когда угол касательной к траектории ее наветренной части в сносящем ветре равен 100, в других работах за такую высоту предлагается считать подъем выброса на фиксированном расстоянии от трубы или его подъем за фиксированное время и т. д.
Некоторые авторы считают, что «потолок» выброса достигается, где он еще различим с помощью измерительной или фотографической аппаратуры.
Считается, что в случае когда радиоактивные или химические опасные вещества поступают в атмосферу посредством взрыва, можно пользоваться результатами работы Бриггса [139]. Однако результаты вычислений по приведенным там формулам также имеют весьма ограниченный диапазон применения. Поэтому рекомендуется, если это возможно, эффективную высоту источника загрязнений определять натуральными измерениями или оценкой.
Бриггс в зависимости от метеорологических условий предлагает проводить расчет подъема струи Δh по одной из нескольких модельных формул. Приведем их. Для устойчивого равновесия атмосферы предлагается выражение:

Значения параметра р, входящего в эту формулу, в зависимости от класса устойчивости атмосферы представлены в таблице 3.6.
Таблица № 3.6.
Скоростной параметр р в зависимости от устойчивости атмосферы и типа местности (по данным [162])
Читать дальшеИнтервал:
Закладка: