Вадим Романов - Прикладные аспекты аварийных выбросов в атмосферу
- Название:Прикладные аспекты аварийных выбросов в атмосферу
- Автор:
- Жанр:
- Издательство:Физматкнига
- Год:2006
- Город:Москва
- ISBN:978-5-89155-166-2
- Рейтинг:
- Избранное:Добавить в избранное
-
Отзывы:
-
Ваша оценка:
Вадим Романов - Прикладные аспекты аварийных выбросов в атмосферу краткое содержание
Книга посвящена проблемам загрязнения окружающей среды при авариях промышленных предприятий и объектов разного профиля и имеет, в основном, обзорный справочный характер.
Изучается динамика аварийных турбулентных выбросов при наличии атмосферной диффузии, характер расширения турбулентных струйных потоков, их сопротивление в сносящем ветре, эволюция выбросов в реальной атмосфере при наличии инверсионных задерживающих слоев.
Классифицируются и анализируются возможные аварии с выбросами в атмосферу загрязняющих и токсичных веществ в газообразной, жидкой или твердой фазах, приводятся факторы аварийных рисков.
Рассмотрены аварии, связанные с выбросами токсикантов в атмосферу, описаны математические модели аварийных выбросов. Показано, что все многообразие антропогенных источников загрязнения атмосферного воздуха при авариях условно может быть разбито на отдельные классы по типу возникших выбросов и характеру движения их вещества. В качестве источников загрязнений рассмотрены пожары, взрывы и токсичные выбросы. Эти источники в зависимости от специфики подачи рабочего тела в окружающее пространство формируют атмосферные выбросы в виде выпадающих на поверхность земли твердых или жидких частиц, струй, терминов и клубов, разлитий, испарительных объемов и тепловых колонок. Рассмотрены экологические опасности выбросов при авариях и в быту.
Книга содержит большой иллюстративный материал в виде таблиц, графиков, рисунков и фотографий, который помогает читателю разобраться в обсуждаемых вопросах. Она адресована широкому кругу людей, чей род деятельности связан преимущественно с природоохранной тематикой: инженерам, научным работникам, учащимся и всем тем, кто интересуется экологической и природозащитной тематикой.
Прикладные аспекты аварийных выбросов в атмосферу - читать онлайн бесплатно ознакомительный отрывок
Интервал:
Закладка:
Полуторакилометровый атмосферный пограничный слой имеет в вертикальном направлении слоистую структуру. Причиной этого служат конвективные движения больших масс воздуха, связанные с неравномерным нагревом и теплопередачей поверхности земли. Практически беспрерывно меняются в погранслое по координате Z такие характеристики атмосферного воздуха как его влажность, температура, скорость и плотность. В горизонтальном направлении эти параметры меняются в сотни раз медленнее. Поэтому в непосредственной окрестности места образования выброса их изменением по х и по у можно пренебречь.
Внутри пограничного слоя атмосферы характерным является падение температуры с высотой (в среднем на 6,5° на 1 км). Однако в отдельные временные промежутки, от нескольких минут до многих часов наблюдаются колебания осредненных значений температуры и плотности атмосферного воздуха по высоте (стратификация). В общем случае газообразный выброс, возникающий на некоторой высоте Z обр, имеет начальную температуру выше температуры окружающей среды, при подъеме в атмосфере будет последовательно проходить отдельные слои (приземный, пограничный, тропосферный и т. д.), пока не потеряет свой динамической индивидуальности. Дальнейшее распространение его вещества будет происходить под действием диффузии в сносящем ветром потоке и подъема при наличии перегрева его вещества до уровня стабилизации. Рассмотрим эволюцию газообразных выбросов в стратифицированной атмосфере [133,152].
Различимость кратковременного выброса в атмосферном воздухе
При отсутствии инверсий температуры в пограничном слое земли выброс нагретого газа всегда теплее окружающего воздуха. Поэтому он должен был бы подниматься не только до верхней границы погранслоя, а значительно выше — теоретически до бесконечности.
Однако из повседневной практики известно, что подъем газообразных выбросов, связанных с деятельностью человека, весьма незначителен. Объясняется это воздействием турбулентных пульсаций атмосферного воздуха, «растаскивающих» выброс на отдельные фрагменты и таким образом разрушающим его. Вещество выброса перераспределяется отдельными вихрями атмосферного воздуха и распространяется по законам атмосферной диффузии.
Таким образом, критерием существования газообразного выброса как целого в атмосфере является условие его динамической различимости на уровне турбулентности атмосферы. Так как турбулентность атмосферы характеризуется энергией ее пульсационного движения Е ∞, то критерий существования выброса может быть записан так:

где р, р ∞ — плотность газа выброса и окружающего воздуха;
V,V ∞e— скорость центра массы кратковременного выброса (скорость газа струи в случае струйного выброса) и проекция скорости сносящего ветрового потока на направление движения выброса.
Критерий (3.71) означает, что выброс различим на фоне турбулентности атмосферы, если энергия его относительного движения превышает энергию турбулентных пульсаций окружающей среды.
Преодоление выбросом инверсионного слоя.
Рассмотрим общий случай состояния атмосферного воздуха около земли. Ему соответствует наличие инверсионного слоя.
На Рис. 3.16 и 3.17 иллюстрируется прохождение выбросом слоя инверсии температуры толщиной ΔZ = Z 3— Z 1,
где — нижняя и верхняя его высоты;
Z 0,Z выбр— уровень поверхности земли и высота
сформированного выброса.
На высоте Z 2внутри слоя выполняется условие равенства температур и плотностей газа выброса и окружающего воздуха. На больших высотах газ выброса, расширяющийся квазиадиабатически, будет холоднее окружающего воздуха, и только на высотах Z > Z 4вне инверсивного слоя температура выброса становится выше температуры окружающей среды.
При ΔZ > 0 и Z 1> Z 0инверсия приподнятая.
при Z 1= Z 0и ΔZ > 0 реализуется случай приземной инверсии;
случай ΔZ = 0 соответствует отсутствию инверсий.
Для получения критерия преодоления выбросом слоя инверсии воспользуемся энергетическим соотношением. В общем случае работа сил плавучести на некотором интервале высот AZ равна изменению кинетической энергии выброса на этом интервале, т. е.

Здесь
ν — объем выброса;
р — ускорение земного тяготения;
E Δz, Е 0— кинетические энергии выброса на соответствующих высотных уровнях.

При наличии инверсионного слоя его задерживающее влияние начинает проявляться с высоты Z 2выравнивания плотностей (температур) в выбросе и вне его. Поэтому естественно приравнять работу сил плавучести в интервале (Z 3-Z 2) изменению энергии выброса в этом интервале, т. е.

(3.72)
где р, р ∞,р 2,р 3— текущее значение плотности газа, плотности окружающего воздуха, а также плотности газа выброса на высотах Z 2и Z s, соответственно;
W 2и W s— вертикальные составляющие скорости выброса на этих высотах, W = V · sin α;
α — угол наклона вектора V к горизонту. Проанализируем уравнение (3.72). Если левая часть этого соотношения больше правой, что соответствует превышению работы сил торможения выброса в задерживающем слое изменению его кинетической энергии, то выброс как динамически целый объект остановится внутри задерживающего слоя на высоте Z g. Высота остановки его динамического подъема определится из условия (W 3= 0):

Если левая часть соотношения (3.72) меньше правой, (энергия выброса больше работы сил торможения), то выброс пробивает инверсионный слой и после его преодоления поднимается до уровня стабилизации, определяемого пульсациями температуры атмосферного воздуха.
Проведенный анализ движения кратковременных выбросов в атмосфере позволяет сделать следующее утверждение. Для преодоления выбросом инверсионного задерживающего слоя необходимо и достаточно выполнение следующих условий:

Условие (3.74) является необходимым, а условие (3.75) — достаточным. На практике возможно наличие нескольких слоев инверсии температуры.

Рис. 3.16. Схема прохождения струей инверсивного задерживающего слоя.
Читать дальшеИнтервал:
Закладка: