Андрей Варламов - Физика повседневности. От мыльных пузырей до квантовых технологий

Тут можно читать онлайн Андрей Варламов - Физика повседневности. От мыльных пузырей до квантовых технологий - бесплатно ознакомительный отрывок. Жанр: sci-phys, издательство Литагент Альпина, год 2020. Здесь Вы можете читать ознакомительный отрывок из книги онлайн без регистрации и SMS на сайте лучшей интернет библиотеки ЛибКинг или прочесть краткое содержание (суть), предисловие и аннотацию. Так же сможете купить и скачать торрент в электронном формате fb2, найти и слушать аудиокнигу на русском языке или узнать сколько частей в серии и всего страниц в публикации. Читателям доступно смотреть обложку, картинки, описание и отзывы (комментарии) о произведении.
  • Название:
    Физика повседневности. От мыльных пузырей до квантовых технологий
  • Автор:
  • Жанр:
  • Издательство:
    Литагент Альпина
  • Год:
    2020
  • Город:
    Москва
  • ISBN:
    978-5-0013-9340-5
  • Рейтинг:
    4/5. Голосов: 11
  • Избранное:
    Добавить в избранное
  • Отзывы:
  • Ваша оценка:
    • 80
    • 1
    • 2
    • 3
    • 4
    • 5

Андрей Варламов - Физика повседневности. От мыльных пузырей до квантовых технологий краткое содержание

Физика повседневности. От мыльных пузырей до квантовых технологий - описание и краткое содержание, автор Андрей Варламов, читайте бесплатно онлайн на сайте электронной библиотеки LibKing.Ru
Почему при течении воды в реках возникают меандры? Как заставить бокал запеть? Можно ли построить переговорную трубку между Парижем и Марселем? Какие законы определяют форму капель и пузырьков? Что происходит при приготовлении жаркого? Можно ли попробовать спагетти альденте на вершине Эвереста? А выпить там хороший кофе? На все эти вопросы, как и на многие другие, читатель найдет ответы в этой книге. Каждая страница книги приглашает удивляться, хотя в ней обсуждаются физические явления, лежащие в основе нашей повседневной жизни. В ней не забыты и последние достижения физики: авторы посвящают читателя в тайны квантовой механики и сверхпроводимости, рассказывают о физических основах магнитно-резонансной томографии и о квантовых технологиях. От главы к главе читатель знакомится с неисчислимыми гранями физического мира. Отмеченные Нобелевскими премиями фундаментальные результаты следуют за описаниями, казалось бы, незначительных явлений природы, на которых тем не менее и держится все величественное здание физики.

Физика повседневности. От мыльных пузырей до квантовых технологий - читать онлайн бесплатно ознакомительный отрывок

Физика повседневности. От мыльных пузырей до квантовых технологий - читать книгу онлайн бесплатно (ознакомительный отрывок), автор Андрей Варламов
Тёмная тема
Сбросить

Интервал:

Закладка:

Сделать
Принцип формирования изображения ЯМР

Опишем принцип формирования изображения методом магнитно-резонансной томографии. Этот метод, использующий неоднородное в пространстве магнитное поле B →, был предложен Полом Лотербуром (илл. 9) в 1973 году. В результате зависящая от значения поля B (см. формулу (2)) резонансная частота ядра оказывается зависящей от положения ядра в пространстве.

9 Пол Лотербур 19272007 В 2003 году он получил Нобелевскую премию в - фото 340

9. Пол Лотербур (1927–2007). В 2003 году он получил Нобелевскую премию в области медицины за вклад в разработку МРТ

Чтобы разобраться с новой постановкой задачи, рассмотрим простой одномерный случай с группами маленьких заполненных водой сфер, расположенных вдоль оси x (илл. 10). При однородном магнитном поле все они дают сигнал на одной и той же частоте. Теперь предположим, что с помощью дополнительных катушек создается магнитное поле, зависящее от x , то есть у магнитного поля появляется градиент. Тогда ЯМР-сигнал для разных групп будет возникать на различных частотах. Например, для пяти групп сфер получается набор из пяти максимумов поглощения. Важно, что интенсивность каждого из них пропорциональна количеству участвующих в резонансе сфер, то есть соответствующему количеству воды. Поскольку градиент поля (то есть производная d B /d x ) известен, возможно установить точную корреляцию между резонансными частотами и положением соответствующих сфер в пространстве. Таким образом, различные сигналы уже можно привязать к расположению их источников в пространстве и судить об относительном содержании водорода вдоль оси x . Создавая градиенты поля вдоль разных осей, можно анализировать и более сложное распределение атомов водорода.

10 Пример ЯМР в одномерном пространстве Заполненные водой сферы в разном - фото 341

10. Пример ЯМР в одномерном пространстве. Заполненные водой сферы в разном количестве расположены в разных точках пространства

a. Прикладывая однородное магнитное поле, получаем единственный резонансный ЯМР-сигнал на частоте, определяемой формулой (2), то есть ħ ω 0 = μ B 0 .

b. При наличии градиента поля резонансные сигналы от различных точек образца происходят на разных частотах, а их интенсивность зависит от количества возбужденных протонов. Благодаря этому ЯМР-спектр (то есть совокупность сигналов поглощения) воспроизводит расположение заполненных водой сфер в пространстве

В МРТ применяется этот же принцип, только в трех измерениях! Однако в пространстве все оказывается куда сложнее нашей одномерной модели. Для визуализации распределения плотности водорода требуются мощные компьютеры, управляющие радиочастотными полями. Для усовершенствования конструкции профиля магнитного поля и выработки методик обработки полученных ЯМР-сигналов потребовались годы исследований. Весьма упрощенно можно сказать, что компьютерная обработка позволяет отображать распределение водорода в пространстве: интенсивность сигнала, испускаемого определенной областью пространства, пропорциональна количеству атомов водорода в этой области, что и позволяет получить информацию о локальной плотности ткани. Посредством применения методов томографии тело пациента «разрезают» по «сечениям» таким образом, чтобы получить трехмерную картину того или иного внутреннего органа (илл. 11).

11 Томография головного мозга Томография это трехмерное обобщение примера - фото 342

11. Томография головного мозга. Томография – это трехмерное обобщение примера, рассмотренного на илл. 10. Она позволяет получить тот же результат, как если бы объект (здесь – мозг) был рассечен слоями, однако бескровно, безболезненно и без повреждения тканей!

Спиновое эхо

Исследуемые материалы обычно содержат неоднородности. Из этого следует, что частота прецессии для разных ядер различна, поэтому FID-сигнал после подачи импульса со временем все больше и больше искажается. Такое искажение возможно исправить с помощью специальной техники, называемой «спиновым эхом». Суть ее заключается в следующем. Созданный в начальный момент времени радиочастотный импульс длительностью t 1 заставляет магнитные моменты выстроиться перпендикулярно внешнему магнитному полю B →. По истечении времени t D (в течение которого произошло определенное изменение FID) подается второй импульс, удвоенной длительности 2 t 1 . Этот импульс обращает магнитные моменты в противоположную сторону (так как два поворота на 90° эквивалентны инверсии направления). Магнитные моменты, которые на протяжении временного интервала t D вращались более быстро и потому были впереди, теперь запаздывают. Однако поскольку они продолжают вращаться быстрее, то вскоре нагоняют запоздание. Поэтому в течение следующего интервала времени t D все магнитные моменты выравниваются. Таким образом, сигнал, который был изменен, подобно эху, восстанавливается в своей первоначальной форме.

Поразительные снимки

Чтобы оценить МРТ по достоинству, следует понимать, что она позволяет получить реальные изображения внутренних органов человека а не их «тени», как на изображениях, получаемых с помощью рентгеновских лучей (действительно, приемник собирает рентгеновские лучи после прохождения сквозь тело, где они в большей или меньшей степени поглощаются костями и тканями).

Человеческий глаз чувствителен к электромагнитным волнам видимой области (см. главу 3, «Цветовое зрение»). К сожалению (или к счастью), глаза не способны воспринять излучение внутренних органов наших тел: мы видим только внешнюю оболочку. В условиях ЯМР ядра излучают электромагнитные волны в диапазоне радиочастот (на частотах куда меньших, чем видимый свет). Поэтому такие волны, пройдя сквозь тело, доходят до измерительного прибора, который в сочетании с высокопроизводительным компьютером превращает полученные сигналы в видимое изображение, уже доступное нашему зрению.

Физики и математики во многом поспособствовали этому удивительному достижению медицины благодаря пониманию квантово-механических свойств ядерных магнитных моментов, теории взаимодействия вещества и излучения, а также созданию цифровой электроники и принципов математической обработки сигналов.

Преимущества МРТ по сравнению с другими методами диагностики многочисленны и значительны. Оператор легко визуализирует необходимое для анализа сечение тела пациента; он также может регистрировать сигналы из нескольких сечений одновременно. В частности, при необходимой настройке градиентов магнитного поля изображение можно получить под желаемым углом, что затруднительно для рентгеноскопии. К тому же исследователь имеет возможность ограничить поле наблюдения, тем самым визуализируя конкретный орган (или его часть) с большим разрешением.

Читать дальше
Тёмная тема
Сбросить

Интервал:

Закладка:

Сделать


Андрей Варламов читать все книги автора по порядку

Андрей Варламов - все книги автора в одном месте читать по порядку полные версии на сайте онлайн библиотеки LibKing.




Физика повседневности. От мыльных пузырей до квантовых технологий отзывы


Отзывы читателей о книге Физика повседневности. От мыльных пузырей до квантовых технологий, автор: Андрей Варламов. Читайте комментарии и мнения людей о произведении.


Понравилась книга? Поделитесь впечатлениями - оставьте Ваш отзыв или расскажите друзьям

Напишите свой комментарий
x