Андрей Варламов - Физика повседневности. От мыльных пузырей до квантовых технологий

Тут можно читать онлайн Андрей Варламов - Физика повседневности. От мыльных пузырей до квантовых технологий - бесплатно ознакомительный отрывок. Жанр: sci-phys, издательство Литагент Альпина, год 2020. Здесь Вы можете читать ознакомительный отрывок из книги онлайн без регистрации и SMS на сайте лучшей интернет библиотеки ЛибКинг или прочесть краткое содержание (суть), предисловие и аннотацию. Так же сможете купить и скачать торрент в электронном формате fb2, найти и слушать аудиокнигу на русском языке или узнать сколько частей в серии и всего страниц в публикации. Читателям доступно смотреть обложку, картинки, описание и отзывы (комментарии) о произведении.
  • Название:
    Физика повседневности. От мыльных пузырей до квантовых технологий
  • Автор:
  • Жанр:
  • Издательство:
    Литагент Альпина
  • Год:
    2020
  • Город:
    Москва
  • ISBN:
    978-5-0013-9340-5
  • Рейтинг:
    4/5. Голосов: 11
  • Избранное:
    Добавить в избранное
  • Отзывы:
  • Ваша оценка:
    • 80
    • 1
    • 2
    • 3
    • 4
    • 5

Андрей Варламов - Физика повседневности. От мыльных пузырей до квантовых технологий краткое содержание

Физика повседневности. От мыльных пузырей до квантовых технологий - описание и краткое содержание, автор Андрей Варламов, читайте бесплатно онлайн на сайте электронной библиотеки LibKing.Ru
Почему при течении воды в реках возникают меандры? Как заставить бокал запеть? Можно ли построить переговорную трубку между Парижем и Марселем? Какие законы определяют форму капель и пузырьков? Что происходит при приготовлении жаркого? Можно ли попробовать спагетти альденте на вершине Эвереста? А выпить там хороший кофе? На все эти вопросы, как и на многие другие, читатель найдет ответы в этой книге. Каждая страница книги приглашает удивляться, хотя в ней обсуждаются физические явления, лежащие в основе нашей повседневной жизни. В ней не забыты и последние достижения физики: авторы посвящают читателя в тайны квантовой механики и сверхпроводимости, рассказывают о физических основах магнитно-резонансной томографии и о квантовых технологиях. От главы к главе читатель знакомится с неисчислимыми гранями физического мира. Отмеченные Нобелевскими премиями фундаментальные результаты следуют за описаниями, казалось бы, незначительных явлений природы, на которых тем не менее и держится все величественное здание физики.

Физика повседневности. От мыльных пузырей до квантовых технологий - читать онлайн бесплатно ознакомительный отрывок

Физика повседневности. От мыльных пузырей до квантовых технологий - читать книгу онлайн бесплатно (ознакомительный отрывок), автор Андрей Варламов
Тёмная тема
Сбросить

Интервал:

Закладка:

Сделать
Транзисторы и закон Мура

В 1965 году американский инженер Гордон Мур, один из основателей компании Intel, сформулировал закон, ставший впоследствии знаменитым. Согласно ему, количество транзисторов, размещенных на микропроцессоре (компонентов, выполняющих арифметические и логические операции), удваивается каждые два года.

Закон Мура с удивительной точностью подтверждался в дальнейшем (см. илл.), во многом потому, что производители восприняли его как руководство к действию при разработках своей продукции. Очевидно, что этот экспоненциальный рост не может длиться бесконечно: минимальный размер транзистора ограничен, по крайней мере, расстоянием между атомами, которое составляет долю нанометра. В 2004 году 100 млн транзисторов уместились на 1 см 2, то есть один транзистор занимал площадь в 10 6нм 2. Согласно закону Мура, атомные размеры будут достигнуты в году 2004+ 2 x , где x – корень уравнения 2 x = 10 6. Отсюда находим x = 6/log2 ∝ 20 лет. Таким образом, закон Мура формально мог бы действовать вплоть 2044 года. На самом же деле, вполне вероятно, что он будет выполняться лишь до 2030 года.

Количество транзисторов на 1 cм 2микропроцессора в зависимости от года его - фото 345

Количество транзисторов на 1 cм 2микропроцессора в зависимости от года его выпуска в продажу. Синие точки соответствуют фактически созданным процессорам, красная прямая – закону Мура

В середине XX века широко используемым полупроводником был германий; сегодня в электронике в основном используется кремний. Примеси, добавляемые в полупроводник, разнообразны и могут быть распределены различными способами. По этой причине транзисторы существуют в самых разных формах. Размер транзистора 1947 года составлял несколько миллиметров. С тех пор они постоянно уменьшались (см. врезку), и в настоящее время огромное количество транзисторов объединено в массивы на интегральных микросхемах (илл. 4). Знакомый всем USB-накопитель в 5 см длиной, с которым мы работаем довольно часто, содержит 4 млрд транзисторов и хранит до 1 Гб данных (8∙10 9бит) [33] Приведенные данные относятся к году первого издания книги; на сегодняшний день объем USB-накопителей может составлять терабайты. – Прим. ред. .

Управляемые электроны в полупроводниках

Объясним вкратце, как полупроводники заставляют электроны быть послушными. В твердом теле, состоящем из большого количества атомов, разрешенные для электронов уровни энергии представляют собой широкие полосы (зоны) (см. главу 24, врезку «Плотность электронных состояний в металле… который становится сверхпроводником»). Электроны занимают эти зоны, начиная с самых низких энергий. Последняя полностью заполненная зона (называемая валентной) и последующая, по крайней мере частично, пустая зона (называемая зоной проводимости) разделены более или менее широкой запрещенной зоной, которую называют щелью.

Для промышленного применения кремний легируется примесями, то есть в его кристаллическую решетку вводятся атомы других элементов. Эти примеси бывают двух типов. Примеси первого типа (например, атомы фосфора) охотно избавляются от своих валентных электронов. Эти электроны заполняют зону проводимости, и полупроводник становится проводником – почти таким же, как металл, если легирование достаточно сильно (см. врезку «Проводник, диэлектрик и полупроводник»). Легированный таким образом полупроводник называется n -типом (от слова negative , «отрицательный», так как заряд электронов отрицательный). Примеси второго типа (например, атомы бора), наоборот, охотно принимают имеющиеся в кристалле свободные электроны на свои внешние энергетические оболочки. Эти электроны берутся из валентной зоны, оставляя в ней незаполненные состояния, так называемые дырки. Под воздействием электрического поля находящийся в валентной зоне электрон может «перескочить» из своего состояния в освободившееся незаполненное, на его место прыгнет следующий электрон, и эта чехарда продолжится далее. Происходящее можно себе представить, как если бы сама дырка несла положительный заряд и перемещалась по направлению электрического поля. В результате и в этом случае полупроводник становится проводником! Легированный таким образом полупроводник называется полупроводником p -типа (от positive , «положительный»). В обоих случаях полупроводник в любой точке остается нейтральным: подвижные заряды компенсируются зарядами ионов.

3 Транзистор с индивидуальными входами чаще всего их объединяют в - фото 346

3. Транзистор с индивидуальными входами (чаще всего их объединяют в интегральные схемы). В отличие от триода, их прародителя, нагрев такому транзистору не требуется. Кроме того, он гораздо дешевле и имеет меньшие размеры

Состояние полупроводника удобно представлять на двумерной диаграмме (илл. 4), где по оси y отложена энергия, а ось x задает направление внутри кристалла. Такая упрощенная трактовка позволяет дать представление об основных процессах, в нем происходящих. Примесным уровням соответствуют состояния внутри запрещенной зоны, в противном случае вносимые ими электроны или дырки могли бы двигаться. Энергия Ферми E Ф (или, как ее еще называют, уровень Ферми (см. главу 27, «Плотность электронных состояний в металле… который становится сверхпроводником»)) являет собой границу между занятыми состояниями и состояниями с более высокой энергией, которые при нулевой температуре пусты. При ненулевой, но не слишком высокой температуре некоторая часть электронов перебирается в зону проводимости, а часть дырок – в валентную полосу. Без легирования их количества обычно невелики. При добавлении примесей типа n ( n -легирование) в зоне проводимости появляются дополнительные электроны, поэтому энергия Ферми, которая возрастает с увеличением их концентрации, приближается к зоне проводимости (илл. 5b). И наоборот, p -легирование сдвигает энергию Ферми вниз, ближе к валентной зоне (илл. 5a).

4 Интегральные схемы на пластине из кремния Сотни тысяч транзисторов образуют - фото 347

4. Интегральные схемы на пластине из кремния. Сотни тысяч транзисторов образуют сложные цепи на кристаллической подложке. Сложный дизайн транзисторов и их соединений получается посредством технологического процесса, называемого литографией

5 Зоны легированного полупроводника p типа a и n типа b Введенные - фото 348

5. Зоны легированного полупроводника p -типа (a) и n -типа (b). Введенные примеси (представленные красными квадратами) захватывают электроны, находившиеся до того в валентной зоне (a), в случае легирования p -типа примесные атомы отдают электроны в зону проводимости (b), создавая дополнительные носители заряда и увеличивая тем самым электропроводность полупроводника

Читать дальше
Тёмная тема
Сбросить

Интервал:

Закладка:

Сделать


Андрей Варламов читать все книги автора по порядку

Андрей Варламов - все книги автора в одном месте читать по порядку полные версии на сайте онлайн библиотеки LibKing.




Физика повседневности. От мыльных пузырей до квантовых технологий отзывы


Отзывы читателей о книге Физика повседневности. От мыльных пузырей до квантовых технологий, автор: Андрей Варламов. Читайте комментарии и мнения людей о произведении.


Понравилась книга? Поделитесь впечатлениями - оставьте Ваш отзыв или расскажите друзьям

Напишите свой комментарий
x