Андрей Варламов - Физика повседневности. От мыльных пузырей до квантовых технологий
- Название:Физика повседневности. От мыльных пузырей до квантовых технологий
- Автор:
- Жанр:
- Издательство:Литагент Альпина
- Год:2020
- Город:Москва
- ISBN:978-5-0013-9340-5
- Рейтинг:
- Избранное:Добавить в избранное
-
Отзывы:
-
Ваша оценка:
Андрей Варламов - Физика повседневности. От мыльных пузырей до квантовых технологий краткое содержание
Физика повседневности. От мыльных пузырей до квантовых технологий - читать онлайн бесплатно ознакомительный отрывок
Интервал:
Закладка:
В 1965 году американский инженер Гордон Мур, один из основателей компании Intel, сформулировал закон, ставший впоследствии знаменитым. Согласно ему, количество транзисторов, размещенных на микропроцессоре (компонентов, выполняющих арифметические и логические операции), удваивается каждые два года.
Закон Мура с удивительной точностью подтверждался в дальнейшем (см. илл.), во многом потому, что производители восприняли его как руководство к действию при разработках своей продукции. Очевидно, что этот экспоненциальный рост не может длиться бесконечно: минимальный размер транзистора ограничен, по крайней мере, расстоянием между атомами, которое составляет долю нанометра. В 2004 году 100 млн транзисторов уместились на 1 см 2, то есть один транзистор занимал площадь в 10 6нм 2. Согласно закону Мура, атомные размеры будут достигнуты в году 2004+ 2 x , где x – корень уравнения 2 x = 10 6. Отсюда находим x = 6/log2 ∝ 20 лет. Таким образом, закон Мура формально мог бы действовать вплоть 2044 года. На самом же деле, вполне вероятно, что он будет выполняться лишь до 2030 года.

Количество транзисторов на 1 cм 2микропроцессора в зависимости от года его выпуска в продажу. Синие точки соответствуют фактически созданным процессорам, красная прямая – закону Мура
В середине XX века широко используемым полупроводником был германий; сегодня в электронике в основном используется кремний. Примеси, добавляемые в полупроводник, разнообразны и могут быть распределены различными способами. По этой причине транзисторы существуют в самых разных формах. Размер транзистора 1947 года составлял несколько миллиметров. С тех пор они постоянно уменьшались (см. врезку), и в настоящее время огромное количество транзисторов объединено в массивы на интегральных микросхемах (илл. 4). Знакомый всем USB-накопитель в 5 см длиной, с которым мы работаем довольно часто, содержит 4 млрд транзисторов и хранит до 1 Гб данных (8∙10 9бит) [33] Приведенные данные относятся к году первого издания книги; на сегодняшний день объем USB-накопителей может составлять терабайты. – Прим. ред.
.
Управляемые электроны в полупроводниках
Объясним вкратце, как полупроводники заставляют электроны быть послушными. В твердом теле, состоящем из большого количества атомов, разрешенные для электронов уровни энергии представляют собой широкие полосы (зоны) (см. главу 24, врезку «Плотность электронных состояний в металле… который становится сверхпроводником»). Электроны занимают эти зоны, начиная с самых низких энергий. Последняя полностью заполненная зона (называемая валентной) и последующая, по крайней мере частично, пустая зона (называемая зоной проводимости) разделены более или менее широкой запрещенной зоной, которую называют щелью.
Для промышленного применения кремний легируется примесями, то есть в его кристаллическую решетку вводятся атомы других элементов. Эти примеси бывают двух типов. Примеси первого типа (например, атомы фосфора) охотно избавляются от своих валентных электронов. Эти электроны заполняют зону проводимости, и полупроводник становится проводником – почти таким же, как металл, если легирование достаточно сильно (см. врезку «Проводник, диэлектрик и полупроводник»). Легированный таким образом полупроводник называется n -типом (от слова negative , «отрицательный», так как заряд электронов отрицательный). Примеси второго типа (например, атомы бора), наоборот, охотно принимают имеющиеся в кристалле свободные электроны на свои внешние энергетические оболочки. Эти электроны берутся из валентной зоны, оставляя в ней незаполненные состояния, так называемые дырки. Под воздействием электрического поля находящийся в валентной зоне электрон может «перескочить» из своего состояния в освободившееся незаполненное, на его место прыгнет следующий электрон, и эта чехарда продолжится далее. Происходящее можно себе представить, как если бы сама дырка несла положительный заряд и перемещалась по направлению электрического поля. В результате и в этом случае полупроводник становится проводником! Легированный таким образом полупроводник называется полупроводником p -типа (от positive , «положительный»). В обоих случаях полупроводник в любой точке остается нейтральным: подвижные заряды компенсируются зарядами ионов.

3. Транзистор с индивидуальными входами (чаще всего их объединяют в интегральные схемы). В отличие от триода, их прародителя, нагрев такому транзистору не требуется. Кроме того, он гораздо дешевле и имеет меньшие размеры
Состояние полупроводника удобно представлять на двумерной диаграмме (илл. 4), где по оси y отложена энергия, а ось x задает направление внутри кристалла. Такая упрощенная трактовка позволяет дать представление об основных процессах, в нем происходящих. Примесным уровням соответствуют состояния внутри запрещенной зоны, в противном случае вносимые ими электроны или дырки могли бы двигаться. Энергия Ферми E Ф (или, как ее еще называют, уровень Ферми (см. главу 27, «Плотность электронных состояний в металле… который становится сверхпроводником»)) являет собой границу между занятыми состояниями и состояниями с более высокой энергией, которые при нулевой температуре пусты. При ненулевой, но не слишком высокой температуре некоторая часть электронов перебирается в зону проводимости, а часть дырок – в валентную полосу. Без легирования их количества обычно невелики. При добавлении примесей типа n ( n -легирование) в зоне проводимости появляются дополнительные электроны, поэтому энергия Ферми, которая возрастает с увеличением их концентрации, приближается к зоне проводимости (илл. 5b). И наоборот, p -легирование сдвигает энергию Ферми вниз, ближе к валентной зоне (илл. 5a).

4. Интегральные схемы на пластине из кремния. Сотни тысяч транзисторов образуют сложные цепи на кристаллической подложке. Сложный дизайн транзисторов и их соединений получается посредством технологического процесса, называемого литографией

5. Зоны легированного полупроводника p -типа (a) и n -типа (b). Введенные примеси (представленные красными квадратами) захватывают электроны, находившиеся до того в валентной зоне (a), в случае легирования p -типа примесные атомы отдают электроны в зону проводимости (b), создавая дополнительные носители заряда и увеличивая тем самым электропроводность полупроводника
Читать дальшеИнтервал:
Закладка: