Андрей Варламов - Физика повседневности. От мыльных пузырей до квантовых технологий
- Название:Физика повседневности. От мыльных пузырей до квантовых технологий
- Автор:
- Жанр:
- Издательство:Литагент Альпина
- Год:2020
- Город:Москва
- ISBN:978-5-0013-9340-5
- Рейтинг:
- Избранное:Добавить в избранное
-
Отзывы:
-
Ваша оценка:
Андрей Варламов - Физика повседневности. От мыльных пузырей до квантовых технологий краткое содержание
Физика повседневности. От мыльных пузырей до квантовых технологий - читать онлайн бесплатно ознакомительный отрывок
Интервал:
Закладка:
На самом же деле Фуко не был первым, кто экспериментально доказал вращение Земли. В 1833 году немецкий ученый Фердинанд Райх бросая камни в шахту глубиной 158 м, констатировал их отклонение после падения от вертикали на 28 мм, что соответствовало последующим результатам применения теории Кориолиса. А в 1661 году, спустя некоторое время после смерти Галилея, знаменитый флорентийский ученый Винченцо Вивиани провел опыт, аналогичный опыту Фуко. Но он его никак не объяснил – либо потому что объяснения не имел, либо из-за страха перед инквизицией.

Галилей на суде инквизиции
Маятник Фуко – настолько занимательный экспонат, что читатель наверняка захочет увидеть его своими глазами (илл. 1). В Париже маятник Фуко был возвращен в Пантеон в 1995 году и доступен для обзора всем желающим, если только не находится в ремонте; еще один можно увидеть в Музее искусств и ремесел [2] Самый длинный из действующих маятников Фуко на территории России находится в Мурманске, в Мурманской государственной областной универсальной научной библиотеке, он был установлен 8 февраля 2018 года. Высота маятника составляет 21 м, а масса – 28 кг. – Прим. ред.
.
Почему бы не изготовить собственный маятник Фуко? Это не лучшая идея, так как здесь кроется множество затруднений. Прежде всего, маятник должен быть длинным, чтобы колебания были медленными, что позволит снизить роль трения. Маятник в Ленинграде был самый большой в истории – длина проволоки 98 м! Следовательно, надо иметь очень высокую точку подвеса и суметь надежно прикрепить к ней маятник. Резко отпущенный маятник может начать извиваться, что увеличивает трение. Еще серьезнее другое препятствие: вместо того чтобы оставаться в плоскости, которая медленно поворачивается, маятник может начать описывать вытянутый конус. Научные сотрудники Университета Гренобля, установившие для студентов маятник Фуко в 2013 году, на собственном опыте оценили степень всех этих трудностей.

5. Мотоциклист склоняется внутрь виража чтобы сбалансировать центробежную силу. Чем круче вираж, тем больше угловая скорость вращения ω и, следовательно, значительнее центробежная сила
Еще одна фиктивная сила: центробежная
Еще одной «фиктивной» силой инерции является центробежная сила, проявления которой нам знакомы куда лучше, чем примеры воздействия силы Кориолиса. Она появляется в системе отсчета, вращающейся по отношению к неподвижным звездам, и стремится отбрасывать неподвижные в этой системе отсчета телá от центра вращения. В повседневной жизни эта сила позволяет нам, к примеру, отжимать белье в стиральной машине: вода выбрасывается наружу через дырки барабана. Мы ощущаем ее воздействие также при езде на мотоцикле (илл. 5) или в автобусе, когда он совершает крутой поворот и нас отбрасывает к внешней стороне виража, на соседа.
Чему эта центробежная сила равна? Для нахождения соответствующей формулы давайте рассмотрим ребенка, катающегося на ярмарочной карусели радиусом R , которая крутится с угловой скоростью ω. Ребенок роняет плюшевого медведя, и, если пренебречь силой тяжести, он улетает по касательной со скоростью v = R ω по отношению к земле (из определения угловой скорости). При этом медведь относительно ребенка движется с ускорением, равным v 2/ R = ω 2 R . Это ускорение возникает потому, что мы рассматриваем движение медведя во вращающейся системе отсчета. Согласно основному закону динамики (см. главу 4, врезку «Ньютоновская механика»), раз в этой системе у медведя массой m имеется ускорение ω 2 R , то на него действует сила F →, равная по модулю m ω 2 R и направленная от центра карусели по радиусу. Это и есть центробежная сила!
Как на ребенка и плюшевого медведя на карусели, на всех нас постоянно действует центробежная сила, вызванная вращением Земли. К счастью, она приблизительно в 300 раз меньше нашего веса, поэтому ее мы почти не замечаем. Из-за воздействия центробежной силы диаметр Земли на экваторе на 43 км больше, чем расстояние от одного полюса до другого, но эта разница составляет примерно 0,3 % и особых последствий не влечет.
С другой стороны, центробежная сила, вызванная вращением Земли, на движение связанных с ней объектов (например на ветер, который является движением воздуха по отношению к почве) не влияет. Действительно, центробежная сила действует и на воздух, и на почву одинаково и зависит только от расстояния до центра вращения. Напротив, сила Кориолиса ничтожна для объекта, связанного с почвой в наземной системе отсчета, однако воздействует на движущийся воздух. В итоге, как мы сейчас увидим, она играет важную роль в метеорологии.
Метеорологические проявления силы Кориолиса
Важным результатом воздействия силы Кориолиса является образование вихрей определенного направления вокруг любой зоны низкого или высокого давления (илл. 6). Можно было бы предположить, что воздушные массы напрямую движутся в зоны низкого давления (такие зоны называются «депрессией» и часто отмечаются буквой D на метеорологических картах). Однако на самом деле под действием силы Кориолиса ветры отклоняются. В Северном полушарии они закручиваются вокруг зоны низкого давления против часовой стрелки. В случае возникновения антициклонов (отмечаемых A) с зонами высокого давления в центре, ветры циркулируют по часовой стрелке. При этом в природе они никогда не образуют вихрь, полностью соответствующий изображенному на илл. 6; и все же мы можем утверждать, что в Северном полушарии ветры имеют низкое давление слева и высокое давление справа (илл. 7). В Южном же полушарии все происходит наоборот (см. главу 5, врезку «В раковинах Южного и Северного полушарий»).

6. Ветер вокруг области пониженного давления с центром D в Северном полушарии. Перепад давления (показанный оранжевым цветом) провоцирует приток воздуха в область пониженного давления (ветер, представленный красными стрелками). Этот ветер отклоняется силой Кориолиса (голубой) и таким образом приближается к центру D, закручиваясь против часовой стрелки (зеленый). Черные стрелки: примерное направление ветра при равновесии между силой Кориолиса и силой, вызванной перепадом давления
Другое проявление силы Кориолиса это направление пассатов – ветров, которые постоянно дуют к западу между 30-й параллелью южной и 30-й параллелью северной широты. Первопричина этих ветров – явление конвекции (см. главу 7, «Температура Земли»): теплый экваториальный воздух поднимается вверх и уступает место прохладному воздуху, происходящему из более высоких широт. Таким образом, на поверхности рождаются ветры, направленные с севера на юг в Северном полушарии и с юга на север в Южном, их называют пассатами. Сила Кориолиса отклоняет эти ветры к западу (илл. 8).
Читать дальшеИнтервал:
Закладка: