Тревор Кокс - Книга звука. Научная одиссея в страну акустических чудес
- Название:Книга звука. Научная одиссея в страну акустических чудес
- Автор:
- Жанр:
- Издательство:КоЛибри
- Год:2018
- Город:Москва
- ISBN:978-5-389-15071-3
- Рейтинг:
- Избранное:Добавить в избранное
-
Отзывы:
-
Ваша оценка:
Тревор Кокс - Книга звука. Научная одиссея в страну акустических чудес краткое содержание
Книга звука. Научная одиссея в страну акустических чудес - читать онлайн бесплатно ознакомительный отрывок
Интервал:
Закладка:
Старая преподавательская в моем университете обладала удивительной способностью окрашивать звук. Это была простая узкая комната прямоугольной формы со стульями, расположенными вдоль одной стены, — похожая на зал ожидания на железнодорожном вокзале. Первое время, заходя в комнату, я замечал, как искажаются голоса других людей. При повороте головы тембр голоса моих коллег поразительным образом менялся. При определенном положении головы их голоса были низкими и звучными, а в остальных случаях — искаженными, скрежещущими и неприятными. Вероятно, коллеги подозревали, что я нетрезв, поскольку мое научное любопытство оказалось сильнее стеснительности и я крутил головой, прислушиваясь к разговорам во время обеденного перерыва.
Когда я поворачивал голову, голоса в комнате становились другими, словно кто-то быстро менял настройки графического эквалайзера высококачественного усилителя. Это окрашивание было вызвано изменением в балансе звука, когда одни частоты усиливались, а другие подавлялись. Термин окрашивание в применении к звуку может показаться странным, но многие термины, используемые для описания звука, также позаимствованы у других органов чувств: яркий, теплый, мертвый, живой . Связь между цветом и звуком была замечена много веков назад: еще сэр Исаак Ньютон отмечал сходство между расстоянием, на которое его призма распределяет цвета, и длиной струн, необходимых для воспроизведения музыкальной гаммы [98].
Даже современные инженеры-акустики выполняют измерения, используя «белый» и «розовый» шум. При смешении красок они образуют определенный цвет, потому что разные пигменты изменяют частотный баланс отражаемого света. Синяя краска отражает электромагнитные колебания более высокой частоты, чем красная. Аналогичным образом инженеры-акустики используют цвет для описания преобладающих частот в звуке. Белый шум содержит все частоты в равных пропорциях — мы слышим шипение, как от плохо настроенного радиоприемника. В розовом шуме преобладают низкие частоты, и он напоминает раскаты грома.
Лестничные пролеты с двумя большими по площади, гладкими параллельными стенами — превосходное место, чтобы услышать эффект окрашивания. Просто хлопнув в ладоши, вы услышите пронзительную высокую ноту. Это порхающее эхо, вызванное тем, что звук многократно отражается от стен и достигает ваших ушей через регулярные интервалы. Частота зависит от того, какое время требуется звуку, чтобы преодолеть расстояние от уха до стен и обратно [99]. При узком лестничном пролете это расстояние невелико, и отражения от стен приходят быстро, одно за другим, в результате чего мы слышим высокий звук. В широких пролетах задержка между отражениями больше, что обусловливает более низкую частоту.
Самое сильное порхающее эхо я слышал в Таттон-парке в графстве Чешир, в произведении Джема Файнера под названием Spiegelei. Это была сферическая камера-обскура, металлический шар диаметром около 1 метра, установленный на сооружении, похожем на большой садовый сарай. Просунув голову внутрь шара, можно было увидеть перевернутое изображение парка, которое проецировалось на внутреннюю поверхность, — зрительные искажения были вдохновлены воспоминаниями художника, который в юности пробовал наркотики в этом парке. Каталог выставки описывал звук внутри шара как «искаженный и безумный» — вполне подходящий для работы, использовавшей несоответствие зрительного образа и гравитации [100]. Я с удивлением наблюдал, что почти все, кто просовывал голову внутрь, экспериментировали с акустикой. В сфере, как и на лестничном пролете, отражение звука приходило через упорядоченные интервалы. И поскольку изогнутые стенки сферы фокусировали звук, отражения были особенно сильными, а окрашивание — выраженным.
В естественной пещере вы вряд ли найдете идеальную сферу. Тем не менее в пещерах можно услышать явный эффект окрашивания. Но действительно ли древние люди использовали эффект окрашивания, заметный в тесных проходах, или длительную реверберацию в больших пещерах? Было бы странно, если бы они не заметили этих эффектов, особенно с учетом плохого освещения и редкости подобных явлений в эпоху, когда еще не существовало зданий. И действительно, в 1980-х гг. специалисты по акустической археологии нашли доказательства, что наскальные рисунки встречаются в местах с необычной акустикой. Один из пионеров в этой области, Егор Резников, писал:
Выдающееся открытие в исследовании пещер с наскальной живописью — взаимосвязь между нарисованными красными точками в узких галереях, где нужно ползти на четвереньках, и максимальным резонансом этих галерей. Вы ползете по темной галерее, время от времени подавая голос, и вдруг вся галерея начинает резонировать: вы включаете фонарь и видите красную точку на стене галереи [101].
Похоже, звук также влиял на сюжеты древних наскальных рисунков. Специалист по акустической археологии Стивен Уоллер пытался поставить эти идеи на более прочную научную основу с помощью статистического анализа того, что появляется в каждой акустической зоне. В статье в журнале Nature он писал: «В глубоких пещерах Фон-де-Гом и Ласко изображения лошадей, быков, бизона и оленя обнаружены в местах с высокими уровнями звукового отражения, тогда как животные из семейства кошачьих находятся в тех местах пещер, где акустика плохая» [102]. По всей видимости, наши древние предки использовали пещерную акустику, рассказывая истории, связанные с рисунками, — рассказы о громких копытных животных усиливались реверберацией, тогда как тихие кошки не нуждались в усилении звука.
Массив свидетельств того, что доисторическая наскальная живопись испытала на себе влияние акустики, достаточно убедителен. Однако Дэвид Лабман, бывший аэрокосмический инженер, изучавший акустику мест археологических раскопок, предупреждает, что корреляция не обязательно означает причинно-следственную связь.
Я встретился с Дэвидом во вьетнамском ресторане в Лос-Анджелесе, чтобы обсудить его работу по археоакустике. Его жена Бренда предусмотрительно приехала на своей машине, чтобы не ждать Дэвида, — когда он начинает говорить о своем увлечении, остановить его очень трудно.
«Довуа [еще один исследователь] и Резников, а также открытая ими корреляция заслуживают самой высокой похвалы, — сказал Дэвид. — Думаю, для меня это был переломный момент» [103]. Потом он объяснил, что для исследования пещер лучше использовать соответствующий научный источник звука, а не голос Резникова, и что вся методология эксперимента уязвима. Гипотеза Дэвида состоит в том, что художники выбирали твердые камни для своих рисунков потому, что на них легче рисовать. По случайному совпадению такие камни лучше всего отражают звук. Звуковые волны не могут проникнуть внутрь плотного материала и отражаются от поверхности. В пористых породах присутствуют микроскопические отверстия — воздушные каналы, через которые проникают звуковые волны. В акустике воздух представляется вязкой жидкостью, похожей на патоку, только более текучей. И, подобно патоке, он сопротивляется проталкиванию в узкие каналы. Когда звук попадает в эти крошечные отверстия в пористом камне, вибрирующие молекулы воздуха, передающие звуковую волну, теряют энергию, которая превращается в тепло. Поэтому отражение от пористых пород слабее, чем от плотных.
Читать дальшеИнтервал:
Закладка: