Стивен Вайнберг - Первые три минуты [litres]

Тут можно читать онлайн Стивен Вайнберг - Первые три минуты [litres] - бесплатно ознакомительный отрывок. Жанр: sci-phys, издательство Литагент АСТ, год 2019. Здесь Вы можете читать ознакомительный отрывок из книги онлайн без регистрации и SMS на сайте лучшей интернет библиотеки ЛибКинг или прочесть краткое содержание (суть), предисловие и аннотацию. Так же сможете купить и скачать торрент в электронном формате fb2, найти и слушать аудиокнигу на русском языке или узнать сколько частей в серии и всего страниц в публикации. Читателям доступно смотреть обложку, картинки, описание и отзывы (комментарии) о произведении.
  • Название:
    Первые три минуты [litres]
  • Автор:
  • Жанр:
  • Издательство:
    Литагент АСТ
  • Год:
    2019
  • Город:
    Москва
  • ISBN:
    978-5-17-113740-3
  • Рейтинг:
    4.5/5. Голосов: 21
  • Избранное:
    Добавить в избранное
  • Отзывы:
  • Ваша оценка:
    • 100
    • 1
    • 2
    • 3
    • 4
    • 5

Стивен Вайнберг - Первые три минуты [litres] краткое содержание

Первые три минуты [litres] - описание и краткое содержание, автор Стивен Вайнберг, читайте бесплатно онлайн на сайте электронной библиотеки LibKing.Ru
В одной из главных и самых известных своих работ «Первые три минуты» Стивен Вайнберг раскрывает современный взгляд на происхождение Вселенной. Простым, доступным языком автор излагает историю фундаментальных астрофизических открытий, разворачивает картину эволюции Вселенной на ранних стадиях ее развития после Большого взрыва и приводит факты, подтверждающие модель так называемой «горячей» Вселенной.

Первые три минуты [litres] - читать онлайн бесплатно ознакомительный отрывок

Первые три минуты [litres] - читать книгу онлайн бесплатно (ознакомительный отрывок), автор Стивен Вайнберг
Тёмная тема
Сбросить

Интервал:

Закладка:

Сделать

Расчеты и измерения обилия легких элементов во Вселенной играют большую роль в космологии не только потому, что с их помощью удается оценить плотность вещества. Поразительно: задавая всего один свободный параметр – соотношение числа нуклонов и фотонов, – можно вычислить наблюдаемую сегодня долю не только обычного водорода и гелия (соответственно 1H и 4He), но и их изотопов 2Н (дейтерий), 3He, а также 7Li. Это не просто количественное подтверждение современной космологической теории. Это серьезное свидетельство того, что мы действительно кое-что знаем об истории Вселенной в первые минуты ее жизни.

Ученые давно надеются получить соотношение числа нуклонов и фотонов из первых принципов. В самые начальные мгновения во Вселенной было невероятно жарко, и ее заполняли всевозможные частицы, присутствовавшие, казалось бы, в равных количествах со своими античастицами. Если бы законы природы не делали различия между веществом и антивеществом, или, что то же самое, барионное и лептонное числа идеально сохранялись бы (см. главу 4), сейчас частиц и античастиц было бы поровну, хотя наблюдения и говорят об обратном. В 1964 г. в экспериментах с элементарными частицами было обнаружено, что природа все же различает вещество и антивещество. Более того, в современных теориях элементарных частиц есть способы нарушить законы сохранения барионного и лептонного чисел. Поэтому вполне возможно, что в столкновениях частиц и античастиц в ранней Вселенной родилось больше вещества, чем антивещества. Поскольку же некоторые частицы в таком случае не нашли себе античастицу для аннигиляции, избыток вещества над антивеществом сохранился до наших дней. (У нас пока не хватает знаний, чтобы ответить на вопрос, почему выжило именно вещество, а не антивещество. Правда, если бы все произошло наоборот, то антифизики на антиземле назвали бы антивещество веществом.) Поскольку асимметрия между веществом и антивеществом незначительна, а барионное и лептонное числа почти сохраняются, то естественно ожидать, что отношение числа барионов и фотонов будет маленьким. Это подтверждается и на практике: оно составляет от одной миллиардной до одной десятимиллиардной.

К сожалению, теоретически предсказать это значение оказалось непросто. Когда в 1970-е гг. физическое сообщество впервые обратило внимание на эти идеи, считалось, что несохранение барионного и лептонного чисел должно было иметь место в очень ранней Вселенной – при температуре около 10 28(десять миллиардов миллиардов миллиардов) градусов. Однако недавно было доказано, что благодаря тонким эффектам в теории слабого и электромагнитного взаимодействий избыток вещества над антивеществом мог возникнуть уже при 10 16(десяти миллионов миллиардов) градусах. В любом случае исчерпывающе ответить на этот вопрос мы не сможем до тех пор, пока полностью не избавимся от белых пятен в электрослабой теории. Поэтому теоретики сейчас ожидают новый экспериментальный материал со Сверхпроводящего суперколлайдера (ССК) в Техасе и Большого адронного коллайдера (БАК) в ЦЕРНе.

Многие астрономы и физики еще несколько десятилетий назад пришли к выводу, что плотность Вселенной – по эстетическим соображениям – должна в точности равняться критической плотности. По мере расширения отношение плотности Вселенной к критической тоже меняется. Если оно меньше 100 %, то будет продолжать уменьшаться, а если больше – увеличиваться. Но, как мы знаем, сегодня, спустя миллиарды лет после Большого взрыва, плотность составляет не менее одной десятой от критического значения. Так может быть, только если в самом начале (скажем, в первые несколько секунд) плотность отличалась от критической на безумно малую величину. Трудно себе представить, как сегодня она может быть такой большой, если только не равна критической и, значит, всегда была ей равна.

Один из способов узнать, равна ли плотность Вселенной критической, – измерить, насколько быстро замедляется расширение. В принципе эти наблюдения можно свести к определению все той же постоянной Хаббла – точнее, зависимости скоростей галактик от расстояния (см. рис. 5). Но проблема здесь такая же, как и полвека назад: чтобы заметить эффект замедления, нужно учесть существование очень далеких галактик – настолько далеких, чтобы свет, принимаемый от них сегодня, был испущен в момент, когда Вселенная расширялась значительно быстрее. Но поскольку мы видим эти удаленные галактики в далеком прошлом, их истинные светимости могут сильно отличаться от измеренных по близким галактикам. Таким образом, по видимым светимостям далеких галактик ничего нельзя сказать о расстоянии до них. Однако, вероятно, физический размер галактик меняется значительно меньше, чем светимость. Поэтому измерение видимых угловых размеров может дать более надежную оценку расстояния. Подобные наблюдения были выполнены в 1992 г. Они показали, что темп расширения Вселенной замедляется примерно в той же степени, как если бы плотность равнялась критической.

Но если плотность Вселенной критическая, то вся ее масса не может пребывать в форме обычного вещества. Это противоречило бы расчетам процесса нуклеосинтеза в первые минуты после Большого взрыва и наблюдаемой распространенности легких элементов. Плотность Вселенной, вероятно, и не равна критической, но она заведомо больше плотности обычного вещества, предсказанной в моделях нуклеосинтеза. Так где же сосредоточена масса Вселенной? В 1970–1980-е гг. бытовало мнение, будто скрытая масса – это обычные нейтрино, которые на самом деле очень легкие, но не безмассовые. Как было показано в главе 4, нейтрино сейчас должно существовать примерно столько же, сколько фотонов. Поэтому легко посчитать, что нейтрино обеспечат критическую плотность, если их масса равна 20 электронвольтам (40 миллионным массы электрона). Но из недавних экспериментов по бета-распаду ядра следует, что масса нейтрино должна быть гораздо меньше, если вообще не равняться нулю.

Скрытую массу можно также набрать за счет каких-нибудь других частиц, более тяжелых, чем нейтрино с его 20 электронвольтами. Просто их будет меньше. Когда температура во Вселенной была высокой, свободно рождались все сорта частиц и античастиц. Однако как только Вселенная расширилась и охладилась, самые тяжелые из них должны были проаннигилировать со своими античастицами – за исключением одного «но». Их во Вселенной могло быть так мало, что они не нашли себе «партнера» для аннигиляции. Если же они были еще и стабильными, то должны были сохраниться до нашего времени. Зная массу частицы и темп ее аннигиляции с античастицами, можно вычислить, сколько их должно было остаться и какую часть массы в космосе они составляют. В последние годы в физике элементарных частиц обсуждается много подобных идей. Сегодня популярностью пользуется гипотеза, согласно которой скрытая масса состоит из стабильных частиц (известных как фотино или нейтралино) с массами от 10 до 10 000 масс протона и медленным темпом аннигиляции. В теории эти частицы возникают в результате особой симметрии, называемой суперсимметрией. Уже идут эксперименты, в которых предполагается зарегистрировать их в очень чувствительных детекторах по столкновениям с атомами. Кроме того, вполне может быть, что эти экзотические тяжелые частицы родятся на одном из мощных ускорителей нового поколения – таких как ССК или БАК. Если они будут открыты, это станет настоящей революцией в космологии и физике элементарных частиц.

Читать дальше
Тёмная тема
Сбросить

Интервал:

Закладка:

Сделать


Стивен Вайнберг читать все книги автора по порядку

Стивен Вайнберг - все книги автора в одном месте читать по порядку полные версии на сайте онлайн библиотеки LibKing.




Первые три минуты [litres] отзывы


Отзывы читателей о книге Первые три минуты [litres], автор: Стивен Вайнберг. Читайте комментарии и мнения людей о произведении.


Понравилась книга? Поделитесь впечатлениями - оставьте Ваш отзыв или расскажите друзьям

Напишите свой комментарий
x