Стивен Вайнберг - Первые три минуты [litres]

Тут можно читать онлайн Стивен Вайнберг - Первые три минуты [litres] - бесплатно ознакомительный отрывок. Жанр: sci-phys, издательство Литагент АСТ, год 2019. Здесь Вы можете читать ознакомительный отрывок из книги онлайн без регистрации и SMS на сайте лучшей интернет библиотеки ЛибКинг или прочесть краткое содержание (суть), предисловие и аннотацию. Так же сможете купить и скачать торрент в электронном формате fb2, найти и слушать аудиокнигу на русском языке или узнать сколько частей в серии и всего страниц в публикации. Читателям доступно смотреть обложку, картинки, описание и отзывы (комментарии) о произведении.
Стивен Вайнберг - Первые три минуты [litres]
  • Название:
    Первые три минуты [litres]
  • Автор:
  • Жанр:
  • Издательство:
    Литагент АСТ
  • Год:
    2019
  • Город:
    Москва
  • ISBN:
    978-5-17-113740-3
  • Рейтинг:
    4.5/5. Голосов: 21
  • Избранное:
    Добавить в избранное
  • Отзывы:
  • Ваша оценка:
    • 100
    • 1
    • 2
    • 3
    • 4
    • 5

Стивен Вайнберг - Первые три минуты [litres] краткое содержание

Первые три минуты [litres] - описание и краткое содержание, автор Стивен Вайнберг, читайте бесплатно онлайн на сайте электронной библиотеки LibKing.Ru
В одной из главных и самых известных своих работ «Первые три минуты» Стивен Вайнберг раскрывает современный взгляд на происхождение Вселенной. Простым, доступным языком автор излагает историю фундаментальных астрофизических открытий, разворачивает картину эволюции Вселенной на ранних стадиях ее развития после Большого взрыва и приводит факты, подтверждающие модель так называемой «горячей» Вселенной.

Первые три минуты [litres] - читать онлайн бесплатно ознакомительный отрывок

Первые три минуты [litres] - читать книгу онлайн бесплатно (ознакомительный отрывок), автор Стивен Вайнберг
Тёмная тема
Сбросить

Интервал:

Закладка:

Сделать

Но самое интересное то, что антропный принцип – если он верен – совсем не обязывает полную плотность вакуума быть равной нулю или меньше критической. Мы знаем (благодаря красным смещениям далеких квазаров), что гравитационное скучивание началось, когда Вселенная была в шесть раз меньше, чем сейчас. Обычное вещество тогда было в 216 (6 3) раз плотнее, а значит, полная плотность вакуума не оказывала никакого влияния на процесс гравитационного скучивания – если, конечно, она не была хотя бы в 100 раз больше современной плотности обычного вещества. Меньшая плотность вакуума может вступить в противоречие с тем, что мы знаем об образовании галактик на поздних этапах космической эволюции. Однако полная плотность вакуума может в 10, а то и в 20 раз превышать плотность обычного вещества, а галактики будут продолжать спокойно формироваться. Следовательно, в рамках антропного принципа нет оснований полагать, что полная плотность вакуума должна быть в 10 или 20 раз меньше плотности вещества (включая темную материю в галактиках и скоплениях галактик). Может быть, 80 или 90 % от критической плотности составляет вакуум, а остальное приходится на обычную материю (в основном темную) того или иного сорта?

К счастью, этот вопрос можно решить путем астрономических наблюдений. Между плотностью обычного вещества и плотностью, связанной с космологической постоянной и/или с квантовыми флуктуациями вакуума, имеется существенное различие. В процессе расширения Вселенной первая падает, а вторая остается постоянной. Эта разница должна проявляться, когда мы смотрим на очень большие расстояния. Благодаря этому можно решить дилемму, состоит ли критическая плотность из плотности обычного вещества или космологического члена.

В пользу последней возможности говорит следующий факт. Если предположить, что большую часть критической плотности составляет лямбда-член, то разрешается назревающее противоречие между измерениями постоянной Хаббла и возрастов звезд. Во Вселенной, полностью заполненной обычным веществом, их возраст обратно пропорционален постоянной Хаббла. Для значения 80 км/с на мегапарсек он равен 8 миллиардам лет, а для 40 км/с на мегапарсек – 16 миллиардам. Но возраст этих звезд можно оценить и сравнивая их наблюдаемые цвета и светимости в шаровых скоплениях с результатами численного моделирования. Он оказывается где-то между 12 и 18 миллиардами лет. Кроме того, из исследований распространенности различных радиоактивных изотопов следует, что нашей Галактике по крайней мере 10 миллиардов лет. Если постоянная Хаббла лежит ближе к верхнему пределу, который дают наблюдатели, то возникает парадокс: Вселенная моложе своих самых старых звезд. Но если предположить, что основной вклад в плотность дает космологическая постоянная, придем к выводу, что в прошлом плотность Вселенной была меньше. Значит, и расширение шло медленнее. И какое бы значение постоянной Хаббла мы ни взяли, мир окажется старше, причем заведомо старше всех своих объектов.

При большой плотности вакуума изменится число галактик с данным красным смещением и видимыми светимостями, галактик, являющихся гравитационными линзами (т. е. фокусирующих своим гравитационным полем свет от более далеких объектов), а также вид зависимости угловых размеров галактик от красного смещения. Большая плотность вакуума пока вроде бы противоречит наблюдениям, однако делать окончательные выводы рано. Если полная плотность вакуума действительно окажется значительно меньше плотности вещества, то антропные аргументы в отношении значения космологической постоянной потеряют свой смысл. Антропный принцип ничего не говорит по поводу того, почему полная плотность вакуума должна быть маленькой.

Какой бы она ни была в современную эпоху, есть веские основания полагать, что в начале расширения она была высокой. Дело в том, что Вселенная, увеличиваясь и охлаждаясь, испытала несколько фазовых переходов вроде превращения воды в лед при температуре ниже 0 °C (см. главу 7). В точке такого перехода значения различных полей, пронизывающих «пустое» пространство, меняются скачком – значит, скачком меняются и энергия, и соответствующая плотность вакуума. Если некоторые поля приходят в равновесие не сразу, то возникает избыток вакуумной энергии, заставляющий Вселенную расширяться быстрее.

В начале 1980-х гг. теоретики обратили на такие фазовые переходы пристальное внимание. Было замечено: благодаря возникающему стремительному расширению, известному как инфляция, можно решить много старых космологических проблем. Скажем, с конца 1970-х было известно, что в процессе фазовых переходов в больших количествах должны появляться магнитные монополи. В реальности же сегодня во Вселенной таковых не наблюдается: их концентрацию значительно снижает как раз инфляция. Что еще более важно, в инфляционных космологических моделях решается (по крайней мере, частично) парадокс с высокой однородностью реликтового излучения. Два луча, разделенные на небесной сфере углом в 2 градуса, в момент излучения (когда Вселенной было всего около миллиона лет) должны были находиться на таком большом расстоянии, что никакой сигнал от одного из них, распространяющийся со скоростью света, не достиг бы другого. Но тогда почему почти на всей небесной сфере одинаковая температура? Как объяснить, что разница температуры точек, разнесенных на 7°, настолько мала, что для ее регистрации понадобилось запускать в космос COBE? [7] СОВЕ – спутник, космическая обсерватория, основной задачей которой было изучение реликтового фона Вселенной. В инфляционных моделях времени, проведенного Вселенной в стадии инфляции, оказывается достаточно, чтобы выровнять распределения вещества и энергии и привести к формированию высокооднородного микроволнового фона.

Существуют самые разнообразные версии инфляции. По одной из них, последняя появляется не в результате затянувшегося фазового перехода, а вырастает из квантовой флуктуации какого-либо поля. Вакуумная энергия после этого с больших значений скатывается к малым, а пространство раздувается до немыслимых размеров. В этой модели наш мир поперечником в несколько миллиардов световых лет, населенный облаком разлетающихся от нас галактик, есть лишь одна из мини-вселенных в огромной подлинной Вселенной, которая постоянно воспроизводит все новые и новые мини-вселенные.

Инфляция дает два ключевых предсказания. Во-первых, плотность мироздания должна быть близка к критической. Во-вторых, неоднородности в микроволновом фоне, которые, согласно инфляции, являются усиленными квантовыми флуктуациями, должны обладать характерным «плоским» спектром на угловых масштабах больше 2°. Оба эти предсказания подтверждаются наблюдениями. Плотность Вселенной близка к критическому значению (или, может быть, даже равна ему), а неоднородности реликтового излучения действительно согласуются с плоским спектром. К сожалению, оба эти предсказания делались и в рамках других моделей – причем еще до того, как была разработана теория инфляции. Пока не ясно, сможем ли мы когда-нибудь найти ее подтверждения при помощи астрономических наблюдений. Впечатляющий прогресс, начавшийся в наблюдательной космологии с 1977 г., подвел экспериментальную базу под стандартную теорию Большого взрыва. Однако тут же возникла пропасть между фантазиями теоретиков и тем, что именно астрономы могут узнать из наблюдений.

Читать дальше
Тёмная тема
Сбросить

Интервал:

Закладка:

Сделать


Стивен Вайнберг читать все книги автора по порядку

Стивен Вайнберг - все книги автора в одном месте читать по порядку полные версии на сайте онлайн библиотеки LibKing.




Первые три минуты [litres] отзывы


Отзывы читателей о книге Первые три минуты [litres], автор: Стивен Вайнберг. Читайте комментарии и мнения людей о произведении.


Понравилась книга? Поделитесь впечатлениями - оставьте Ваш отзыв или расскажите друзьям

Напишите свой комментарий
x