Ричард Фейнман - Фейнмановские лекции по физике. Современная наука о природе [litres]

Тут можно читать онлайн Ричард Фейнман - Фейнмановские лекции по физике. Современная наука о природе [litres] - бесплатно ознакомительный отрывок. Жанр: sci-phys, издательство Литагент АСТ, год 2019. Здесь Вы можете читать ознакомительный отрывок из книги онлайн без регистрации и SMS на сайте лучшей интернет библиотеки ЛибКинг или прочесть краткое содержание (суть), предисловие и аннотацию. Так же сможете купить и скачать торрент в электронном формате fb2, найти и слушать аудиокнигу на русском языке или узнать сколько частей в серии и всего страниц в публикации. Читателям доступно смотреть обложку, картинки, описание и отзывы (комментарии) о произведении.
  • Название:
    Фейнмановские лекции по физике. Современная наука о природе [litres]
  • Автор:
  • Жанр:
  • Издательство:
    Литагент АСТ
  • Год:
    2019
  • Город:
    Москва
  • ISBN:
    978-5-17-113087-9
  • Рейтинг:
    4/5. Голосов: 11
  • Избранное:
    Добавить в избранное
  • Отзывы:
  • Ваша оценка:
    • 80
    • 1
    • 2
    • 3
    • 4
    • 5

Ричард Фейнман - Фейнмановские лекции по физике. Современная наука о природе [litres] краткое содержание

Фейнмановские лекции по физике. Современная наука о природе [litres] - описание и краткое содержание, автор Ричард Фейнман, читайте бесплатно онлайн на сайте электронной библиотеки LibKing.Ru
В свое время преподаватели Калифорнийского технологического университета задумались о том, как можно было бы перестроить курс физики, чтобы сделать его более занимательным и современным. Изложение материала в старых учебниках было настолько скучным, что отбивало охоту к учению даже у самых усердных студентов. Ричард Фейнман с энтузиазмом подхватил эту идею и разработал новый, авторский курс лекций по общей физике. Читая эти лекции, он, по его собственным словам, ориентировался на самых сообразительных и одаренных, однако постарался учесть интересы и того студента, которого весь этот фейерверк мыслей может встревожить и отпугнуть, и выстроил материал таким образом, чтобы даже у этого студента осталось в голове основное ядро и понимание того, что он может получить в перспективе, продолжив изучение физики на более серьезном уровне. В настоящее издание включена вступительная часть лекций, посвященная общим законам природы.

Фейнмановские лекции по физике. Современная наука о природе [litres] - читать онлайн бесплатно ознакомительный отрывок

Фейнмановские лекции по физике. Современная наука о природе [litres] - читать книгу онлайн бесплатно (ознакомительный отрывок), автор Ричард Фейнман
Тёмная тема
Сбросить

Интервал:

Закладка:

Сделать
Фиг 69 Распределение молекул газа по скоростям Скорость может иметь любую - фото 73

Фиг. 6.9. Распределение молекул газа по скоростям.

Скорость может иметь любую величину, однако больше шансов за то, что она окажется где-то в окрестности наиболее вероятного или ожидаемого значения < υ >.

О кривой, показанной на фиг. 6.9, часто говорят в несколько ином смысле. Если мы возьмем газ, заключенный в каком-то сосуде (скажем, объемом 1 л ), то окажется, что в нем имеется огромное количество молекул ( N ≈ 10 22). Поскольку p ( υ) Δ υ – вероятность того, что первая попавшаяся молекула будет лететь со скоростью, находящейся в интервале Δ υ , то, по определению, ожидаемое число молекул <���Δ N > со скоростью, находящейся в этом же интервале, будет равно

< ΔN > = N p (υ) Δυ. (6.21)

Поэтому Np ( υ ) можно назвать «распределением молекул по скоростям». Площадь под кривой между двумя значениями скоростей υυ 2[заштрихованная область на фиг. 6.9 для кривой Np ( υ )]представляет ожидаемое число молекул со скоростями между υυ 2. Но в газе, который содержит обычно огромное число молекул, отклонения от ожидаемого значения будут очень малы (порядка 1/√ N ), поэтому часто мы выбрасываем слово «ожидаемое» и говорим просто: «Число молекул со скоростями между υυ 2равно площади заштрихованного участка». Однако нужно все-таки помнить, что речь в таких случаях всегда идет о вероятном числе.

§ 5. Принцип неопределенности

Понятия вероятности оказались очень полезны при описании поведения газа, состоящего из огромного количества молекул. Немыслимо же в самом деле пытаться определить положение и скорость каждой из 10 22молекул! Когда впервые теория вероятности была применена к таким явлениям, то это рассматривалось просто как удобный способ работы в столь сложной обстановке. Однако теперь мы полагаем, что вероятность существенно необходима для описания различных атомных процессов. Согласно квантовой механике, этой математической теории малых частичек, при определении положения частички и ее скорости всегда существует некоторая неопределенность. В лучшем случае мы можем только сказать, что существует какая-то вероятность того, что частица находится вблизи точки х.

Для описания местоположения частицы можно ввести плотность вероятности p 1( x ), так что p 1( xх будет вероятностью того, что частица находится где-то между х и х + Δ х . Если положение частицы установлено достаточно хорошо, то примерный вид функции p 1( x ) может иллюстрировать график, приведенный на фиг. 6.10, а. Точно такое же положение и со скоростью частицы: она тоже неизвестна нам точно. С некоторой вероятностью p ( υ) Δ υ частица может двигаться со скоростью, находящейся в интервале между υ и υ + Δ υ .

Фиг 610 Плотности вероятности координаты а и скорости б частицы Один из - фото 74

Фиг. 6.10. Плотности вероятности координаты (а) и скорости (б) частицы.

Один из основных результатов квантовой механики состоит в том, что эти две плотности p 1( x ) и p 2( υ ) не могут быть выбраны независимо в том смысле, что они обе не могут быть сколь угодно узкими. Если мы возьмем «полуширины» кривых p 1( x ) и p 2( υ ) и обозначим их соответственно [Δ х ] и [Δ υ ] (см. фиг. 6.10), то природа требует, чтобы произведение этих двух полуширин было не меньше величины h/m , где m – масса частицы, a h – некоторая фундаментальная физическая постоянная, называемая постоянной Планка . Это соотношение записывается следующим образом:

и называется принципом неопределенности Гейзенберга Чтобы это соотношение - фото 75

и называется принципом неопределенности Гейзенберга.

Чтобы это соотношение выполнялось, частица должна себя вести очень курьезно. Вы видите, что правая часть соотношения (6.22) постоянна, а это означает, что если мы попытаемся «приколоть» частицу в каком-то определенном месте, то эта попытка окончится тем, что мы не сможем угадать, куда она летит и с какой скоростью. Точно также если мы попытаемся заставить частицу двигаться очень медленно или с какой-то определенной скоростью, то она будет «расплываться» и мы не сможем точно указать, где она находится.

Принцип неопределенности выражает ту неясность, которая должна существовать при любой попытке описания природы. Наиболее точное и полное описание природы должно быть только вероятностным. Однако некоторым физикам такой способ описания приходится не по душе. Им кажется, что о реальном поведении частицы можно говорить только, когда одновременно заданы импульсы и координаты. В свое время на заре развития квантовой механики эта проблема очень сильно волновала Эйнштейна. Он часто качал головой и говорил: «Но ведь не гадает же Господь Бог „орел-решка“, чтобы решить, куда должен двигаться электрон!» Этот вопрос беспокоил его в течение очень долгого времени, и до конца своих дней он, по-видимому, так и не смог примириться с тем фактом, что вероятностное описание природы – это максимум того, на что мы пока способны. Есть физики, которые интуитивно чувствуют, что наш мир можно описать как-то по-другому, что можно исключить эти неопределенности в поведении частиц. Они продолжают работать над этой проблемой, но до сих пор ни один из них не добился сколько-нибудь существенного результата.

Эта присущая миру неопределенность в определении положения частицы является наиболее важной чертой описания структуры атомов. В атоме водорода, например, который состоит из одного протона, образующего ядро, и электрона, находящегося где-то вне его, неопределенность в местонахождении электрона такая же, как и размеры самого атома! Мы не можем поэтому с уверенностью сказать, где, в какой части атома находится наш электрон, и уж, конечно, не может быть и речи ни о каких «орбитах». С уверенностью можно говорить только о вероятности p ( rυ обнаружить электрон в элементе объема Δ υ на расстоянии r от протона. Квантовая механика позволяет в этом случае вычислять плотности вероятности p ( r ), которая для невозмущенного атома водорода равна Aer 2/ a 2.

Это – колоколообразная функция наподобие изображенной на фиг. 6.8, причем число а представляет собой характерную величину радиуса, после которого функция очень быстро убывает. Несмотря на то что существует вероятность (хотя и небольшая) обнаружить электрон на большем, чем а , расстоянии от ядра, мы называем эту величину «радиусом атома». Она равна приблизительно 10 −10 м.

Читать дальше
Тёмная тема
Сбросить

Интервал:

Закладка:

Сделать


Ричард Фейнман читать все книги автора по порядку

Ричард Фейнман - все книги автора в одном месте читать по порядку полные версии на сайте онлайн библиотеки LibKing.




Фейнмановские лекции по физике. Современная наука о природе [litres] отзывы


Отзывы читателей о книге Фейнмановские лекции по физике. Современная наука о природе [litres], автор: Ричард Фейнман. Читайте комментарии и мнения людей о произведении.


Понравилась книга? Поделитесь впечатлениями - оставьте Ваш отзыв или расскажите друзьям

Напишите свой комментарий
x