Маркус Чаун - Гравитация. Последнее искушение Эйнштейна
- Название:Гравитация. Последнее искушение Эйнштейна
- Автор:
- Жанр:
- Издательство:неизвестно
- Год:2017
- ISBN:нет данных
- Рейтинг:
- Избранное:Добавить в избранное
-
Отзывы:
-
Ваша оценка:
Маркус Чаун - Гравитация. Последнее искушение Эйнштейна краткое содержание
Прославленный научно-популярный автор Маркус Чаун приглашает вас в увлекательное путешествие — с того момента, как в 1666 году гравитация была признана физической силой, до открытия гравитационных волн в 2015 году. Близится тектонический сдвиг в наших представлениях о физике, и эта книга рассказывает, какие вопросы ставит перед нами феномен гравитации.
Гравитация. Последнее искушение Эйнштейна - читать онлайн бесплатно полную версию (весь текст целиком)
Интервал:
Закладка:
На самом деле Эйнштейн был не единственным учёным, предположившим, что необычное движение Меркурия можно объяснить тем, что рядом с Солнцем сила притяжения несколько выше, чем предполагает закон Ньютона. В конце XIX века американский астроном Саймон Ньюком, [178] В 1902 году Саймон Ньюкомб заявил: «Полёты на механизмах тяжелее воздуха непрактичны и не представляют интереса, если вообще возможны». Уже через год Орвил Райт доказал, что тот был не прав.
отмечал, что эта аномалия могла бы быть устранена, если бы сила притяжения ослабевала не в соответствии с законом обратных квадратов, то есть не во второй степени, а в степени 2,0000001612. [179] Newcomb S. The Elements of the Four Inner Planets and the Fundamental Constants of Astronomy: Supplement to the American Ephemeris and Nautical Almanax for 1897. — Washington DC: Government Printing Office, 1895. — P. 184.
Такое изменение испортило бы элегантную простоту закона Ньютона, но даже если Природа выбирает не самый красивый вариант, нам остаётся лишь согласиться с ним. Идея Ньюкома потерпела неудачу лишь потому, что, хотя его запутанный закон притяжения и объяснял движение Меркурия, он не мог описать движение Луны.
Объяснение Эйнштейна было применимо и к Меркурию, и к Луне. Вблизи Солнца, обладающего огромной массой, пространство-время было достаточно искривлено, чтобы вызвать заметную аномалию движения. Ближе к Земле пространство-время искривляется меньше, так что мы не видим ничего необычного в движении Луны.
История повторялась. Хендрик Лоренц и Джордж Фицджеральд предполагали, что длина тела укорачивается, когда оно движется со скоростью, близкой к световой, но не смогли это фундаментально обосновать. А Эйнштейну это удалось. Точно так же и Ньюком предположил, что сила гравитации вблизи Солнца должна быть немного выше той, что предполагал Ньютон, но не сумел дать этому факту фундаментальное (а в данном случае даже верное) обоснование. В отличие от Эйнштейна.
Уравнения поля Эйнштейна
Давление со стороны Гилберта, постоянно дышавшего Эйнштейну в затылок, дало положительный эффект. В течение недели, предшествовавшей его последней, четвёртой лекции, после восьми лет упорного труда практически в последнюю секунду Эйнштейн достиг своей цели. Двадцать пятого ноября 1915 года, застегнув пальто на все пуговицы, чтобы не чувствовать холода, он прошёл по улице Унтер-ден-Линден до Прусской академии и написал на доске перед аудиторией уравнение:
G μν = 8π GT μν / c 4.
Так звучит закон гравитации, распространяющийся на все тела вне зависимости от движения или покоя. В этой короткой последовательности цифр заключается вся общая теория относительности. Американский научно-популярный писатель Деннис Овербай назвал его «уравнением, которое управляет Вселенной». [180] Overbye D. A Century Ago, Einstein’s Theory of Relativity Changed Everything // New York Times. — 24 November 2015.
Это уравнение Эйнштейна записано в очень короткой форме. Как Тардис из «Доктора Кто», изнутри оно больше, чем снаружи. Левая его часть представляет собой таблицу с цифрами 4×4, называемую тензором кривизны, которая полностью описывает кривизну пространства-времени. В правой части находится ещё одна таблица с цифрами 4×4, которая называется энергетическим тензором напряжений и сводит воедино все «источники гравитации». [181] Тензор напряжения похож на сумку, в которой хранятся все данные о том, что существует в определённой точке пространства-времени: удельная энергия, плотности импульсов, давление, деформация и так далее ( http://pitt.edu/~jdnorton/teaching/HPS_0410/chapters/general_relativity/index.html ).
Тот факт, что с каждой стороны уравнения находятся таблицы 4×4, означает, что на самом деле это не одно уравнение, а целых 16. Использовав аргумент симметрии, Эйнштейн сумел уменьшить их количество до десяти. Но тем не менее он противопоставил целых десять уравнений единому уравнению Ньютона.
Эйнштейновские уравнения гравитационного поля задают искривлённое пространство-время, которое возникает при любом распределении массы-энергии. По сути, они представляют собой математическое отражение фразы Джона Уилера: «Материя заставляет пространство-время искривляться, а искривлённое пространство-время говорит ей, как нужно двигаться». Обнаружить гравитационное поле, соответствующее всем десяти уравнениям, очень трудно — настолько, что, если кому-то это удаётся, поле называют его именем.
Уравнения поля Эйнштейна общековариантны, то есть независимы от точки зрения наблюдателя (или, если говорить более научным языком, они сохраняют форму вне зависимости от системы координат, в которой они выражаются). В этом и состоит их красота, которая стоила Эйнштейну большой крови и слёз.
Но эта теория отличалась от той, которую он собирался создать в 1907 году. Его целью было обобщить специальную теорию относительности, поняв, как нужно изменить значения пространства и времени для наблюдателей, ускоряющихся (движущихся с переменной скоростью) относительно друг друга, таким образом, чтобы на них распространялись общие физические законы. По сути, Эйнштейн заменил ньютоновскую теорию гравитации новым усовершенствованным вариантом, а не разработал новую, посвящённую ускоряющимся наблюдателям. Это один из примеров счастливых случайностей, встречающихся в мире науки.
Искривление света под воздействием гравитации
В тот самый момент, когда Эйнштейн выводил мелом на доске своё уравнение, в Европе набирала обороты мировая война. В 1915 году уже применялись газы, душившие, отравлявшие и обжигавшие солдат по обе стороны фронта, цеппелины уже сбрасывали бомбы на британские города, а лайнер «Лузитания» уже затонул у побережья Ирландии после попадания торпеды, унёсшей жизни 1198 человек.
Но, несмотря на нарастающие ужасы войны, учёные из враждующих стран продолжали поддерживать контакт. Через несколько недель после публикации общей теории относительности копии работы Эйнштейна были переданы в Нидерланды, а из них — в Англию. И невзирая на то, что война унесла десять миллионов жизней и навсегда подорвала здоровье ещё стольких же людей, именно англичанин сумел подтвердить ключевую догадку Эйнштейна, подняв немецкого учёного на высшую ступень научного пьедестала. Это произошло в год перемирия, 11 ноября 1918 года. [182] Несмотря на то что Эйнштейн родился и жил в Германии, строго говоря, он не был немцем, так как в 1986 году в возрасте 26 лет отказался от немецкого гражданства.
Кембриджский учёный Артур Стэнли Эддингтон получил контрабандный экземпляр работы Эйнштейна от голландского астронома Виллема де Ситтера в Лейдене. Будучи успешным популяризатором науки, он стал основным проводником идей Эйнштейна в англоязычном мире. Когда в 1919 году его спросили, правда ли, что общую теорию относительности могут понять всего три человека в мире, он (возможно, несколько нескромно) ответил: «Да? А кто третий?».
Читать дальшеИнтервал:
Закладка: