Маркус Чаун - Гравитация. Последнее искушение Эйнштейна
- Название:Гравитация. Последнее искушение Эйнштейна
- Автор:
- Жанр:
- Издательство:неизвестно
- Год:2017
- ISBN:нет данных
- Рейтинг:
- Избранное:Добавить в избранное
-
Отзывы:
-
Ваша оценка:
Маркус Чаун - Гравитация. Последнее искушение Эйнштейна краткое содержание
Прославленный научно-популярный автор Маркус Чаун приглашает вас в увлекательное путешествие — с того момента, как в 1666 году гравитация была признана физической силой, до открытия гравитационных волн в 2015 году. Близится тектонический сдвиг в наших представлениях о физике, и эта книга рассказывает, какие вопросы ставит перед нами феномен гравитации.
Гравитация. Последнее искушение Эйнштейна - читать онлайн бесплатно полную версию (весь текст целиком)
Интервал:
Закладка:
Эддингтон сосредоточился на идее Эйнштейна о том, что сила гравитации Солнца искривляет свет. Эйнштейн открыл этот эффект в 1907 году, когда заканчивал работу над статьёй о специальной теории относительности и уже раздумывал о создании такой теории гравитации, которая, в отличие от ньютоновской, отражала бы его новое видение пространства, времени, массы и энергии.
Согласно специальной теории относительности вся энергия, включая световую, имеет эффективную массу. [183] Частица света фотон не имеет внутренней массы (массы покоя), ведь, если бы она у него была, он не мог бы перемещаться со скоростью света. Его эффективная масса полностью определяется его энергией или, если точнее, энергией-импульсом.
Соответственно, такое массивное тело, как Солнце, должно притягивать к себе свет так же, как оно притягивает материю. Если бы этот эффект удалось увидеть, эйнштейновская теория гравитации получила бы серьёзное подтверждение.
Однако к тому моменту, когда Эйнштейн закончил работу над общей теорией гравитации, он уже осознавал, что гравитация искривляет свет гораздо слабее, чем он предполагал в 1907 году.
Давайте вернёмся к нашему астронавту в ракете с затемнёнными иллюминаторами, имеющей ускорение 1 g и находящейся вдали от каких-либо планет, а значит, не испытывающей на себе их гравитации. Поскольку ноги космонавта притягиваются к полу, а все предметы падают с одинаковой скоростью вне зависимости от их массы, он никак не сможет определить, что движется в космосе, а не стоит на Земле.
Хотя на самом деле это не совсем так. Есть один способ.
Земля круглая, а это значит, что все тела падают по направлению к её центру. Если два предмета бросить на противоположных сторонах земного шара, например в Британии и Новой Зеландии, они будут падать в противоположных направлениях. Но где бы мы ни бросили два предмета, их пути обязательно пересекутся в какой-то момент движения к центру Земли.
А вот астронавт в ракете увидит кое-что другое. Если он будет наблюдать за падением двух объектов с помощью достаточно точного измерительного прибора, он обнаружит, что их пути не сходятся, а всегда остаются параллельными. Благодаря этому он поймёт, что не находится на Земле.
Удивительно, но это не опровергает эйнштейновскую теорию гравитации. Принцип эквивалентности, на котором строится вся общая теория относительности, указывает на то, что гравитация и ускорение должны быть неразличимы локально , то есть в ограниченной области пространства.
Но тот факт, что вблизи крупных небесных тел, таких как Земля и Солнце, пути движения падающих предметов сходятся, имеет значение для движения луча света. Рядом с такими телами (в отличие от ракеты нашего астронавта) свет искривляется в два раза сильнее, чем можно ожидать.
Телом, максимально искривляющим путь света, в нашей системе является Солнце, масса которого составляет 99,8% от её совокупной массы. Эйнштейн понял: чтобы увидеть этот эффект, нужно выбрать далёкую звезду, свет которой проходит мимо солнечного диска по пути к Земле в том месте, где ткань пространства-времени прогибается наиболее сильно. Путь такого света искривится, как тропинка, по которой идёт путешественник в холмистой местности. То есть для наблюдателя с Земли звезда перейдёт на другое место на небе.
Повесть о двух затмениях
Звёзды, которые находятся в непосредственной близости от Солнца, невозможно увидеть из-за его сияния, как нельзя заметить светлячка в свете автомобильных фар. Эти звёзды становятся доступными для наблюдения лишь в одном случае: когда солнечный диск закрывает Луна. При полном затмении мир погружается во мрак, и на несколько минут на дневном небе появляются звёзды.
Полные солнечные затмения можно наблюдать на нашей планете в разных местах каждые несколько лет. Но то положение Солнца, Луны и Земли, которое было необходимо Эйнштейну, можно наблюдать лишь в одной узкой полосе земной поверхности. Соответственно, шансы увидеть полное затмение в конкретном месте в конкретное время очень малы — примерно один раз в 350 лет.
Удачным образом 24 августа 1914 года полное солнечное затмение можно было наблюдать в Крыму, который находится не так далеко от Германии. Поэтому в Крым была организована экспедиция немецких учёных под руководством Эрвина Фройндлиха, астронома, которого глубоко впечатлили идеи Эйнштейна. Девятнадцатого июля Фройндлих с двумя помощниками и четырьмя телескопами отбыл из Берлина. Но это было не лучшее время для визита в Россию.
Возможно, Фройндлих слышал о том, что за три недели до этого в Сараево от пули сербского националиста погиб австрийский эрцгерцог Франц Фердинанд. Но, как и большинство жителей Европы, он не понимал, что за чудовищную машину запустил этот выстрел Гаврило Принципа. Первого августа Российская империя объявила войну Германии, а через три дня к ней присоединилась Великобритания.
Всего за одну ночь Фройндлих и его спутники превратились из гостей России в её врагов. Их оборудование конфисковали, а сами они оказались в тюрьме. Полное затмение они пропустили, но небо над Крымом в тот день всё равно было затянуто облаками. Правда, они недолго оставались в беде. В ходе одного из первых обменов пленными в Первой мировой войне их отпустили взамен на освобождение русских офицеров, и к концу сентября они вернулись в Берлин.
Для Эйнштейна обстоятельства складывались достаточно удачно, и не только потому, что Фройндлих был его другом. Дело в том, что, если бы тому удалось измерить отклонение звёздного света вблизи Солнца, полученные значения не совпали бы с предположениями Эйнштейна. В 1914 году он всё ещё верил, что такое отклонение должно составить 0,87 секунды дуги (это число он получил в 1911 году), в то время как в 1915 году в соответствии с общей теорией относительности было получено другое значение — 1,7 секунды дуги. [184] Одна секунда дуги равна 1/60 минуты дуги, которая, в свою очередь, составляет 1/60 градуса. Соответственно, 1 секунда дуги — это 1/3600 градуса.
Но Первая мировая война закончилась, и 29 мая 1919 года произошло очередное полное солнечное затмение. Эддингтон со своим ассистентом отправился наблюдать его на Принсипи, небольшой остров вулканического происхождения в Гвинейском заливе у берегов Западной Африки. Погодные условия в день затмения были далеки от идеальных — с утра начался тропический ливень, но к середине дня он затих. Эддингтон и его ассистент с ужасом наблюдали, как облака то расходились, то снова появлялись, в то время как лунный диск медленно закрывал Солнце. Им оставалось лишь продолжать наблюдение и надеяться на лучшее.
Из 16 снимков, сделанных Эддингтоном, лишь на шести Солнце не закрывали облака. Из них четыре оказалось невозможно проявить в жарком тропическом климате Принсипи, поэтому их пришлось отложить до возвращения в Англию. Из оставшихся двух только на одном звёздное небо получилось достаточно ясным, чтобы Эддингтон мог провести свои измерения.
Читать дальшеИнтервал:
Закладка: