Маркус Чаун - Гравитация. Последнее искушение Эйнштейна

Тут можно читать онлайн Маркус Чаун - Гравитация. Последнее искушение Эйнштейна - бесплатно полную версию книги (целиком) без сокращений. Жанр: sci-phys, год 2017. Здесь Вы можете читать полную версию (весь текст) онлайн без регистрации и SMS на сайте лучшей интернет библиотеки ЛибКинг или прочесть краткое содержание (суть), предисловие и аннотацию. Так же сможете купить и скачать торрент в электронном формате fb2, найти и слушать аудиокнигу на русском языке или узнать сколько частей в серии и всего страниц в публикации. Читателям доступно смотреть обложку, картинки, описание и отзывы (комментарии) о произведении.
  • Название:
    Гравитация. Последнее искушение Эйнштейна
  • Автор:
  • Жанр:
  • Издательство:
    неизвестно
  • Год:
    2017
  • ISBN:
    нет данных
  • Рейтинг:
    3/5. Голосов: 11
  • Избранное:
    Добавить в избранное
  • Отзывы:
  • Ваша оценка:
    • 60
    • 1
    • 2
    • 3
    • 4
    • 5

Маркус Чаун - Гравитация. Последнее искушение Эйнштейна краткое содержание

Гравитация. Последнее искушение Эйнштейна - описание и краткое содержание, автор Маркус Чаун, читайте бесплатно онлайн на сайте электронной библиотеки LibKing.Ru
Разгадав тайну гравитации, мы сможем ответить на величайшие вопросы науки: что такое пространство? Что такое время? Что такое Вселенная? Откуда все это взялось?
Прославленный научно-популярный автор Маркус Чаун приглашает вас в увлекательное путешествие — с того момента, как в 1666 году гравитация была признана физической силой, до открытия гравитационных волн в 2015 году. Близится тектонический сдвиг в наших представлениях о физике, и эта книга рассказывает, какие вопросы ставит перед нами феномен гравитации.

Гравитация. Последнее искушение Эйнштейна - читать онлайн бесплатно полную версию (весь текст целиком)

Гравитация. Последнее искушение Эйнштейна - читать книгу онлайн бесплатно, автор Маркус Чаун
Тёмная тема
Сбросить

Интервал:

Закладка:

Сделать

Оказалось, что подобная сила действительно существует. Она была обнаружена благодаря квантовой теории, описывающей странный микроскопический мир атомов и составляющих их элементов. [197] См. главу 8.

Квантовые звёзды

Квантовая теория возникла в начале XX века, но математическую базу под неё подвели лишь в середине 1920-х годов. Согласно этой теории, мельчайшие составляющие материи ведут себя одновременно как локализованные частицы (похожие на крошечные бильярдные шары) и как распространяющиеся волны (как рябь на поверхности пруда). Этот корпускулярно-волновой дуализм является причиной множества странных и удивительных явлений. Например, когда одна частица может находиться в двух местах одновременно. Кроме того, он играет важную роль в том, что в конце своего жизненного цикла звёзды утрачивают энергию. [198] Как замечал Ричард Фейнман, с точки зрения классической физики существование атомов совершенно невозможно. Но принцип неопределённости Гейзенберга исправляет эту ситуацию. Электрон в атоме вращается вокруг ядра, как планета — вокруг Солнца. Согласно теории электромагнетизма он действует как крошечный радиопередатчик, излучающий свою орбитальную энергию в виде электромагнитных волн. Для того чтобы упасть на ядро, ему требуется меньше миллионной доли секунды, но он не делает этого, потому что квантовую волну электрона нельзя сжать до заданного небольшого объёма. С точки зрения частиц электрон, который прижимается к ядру, похож на пчелу в постоянно сжимающейся коробочке, становящуюся всё более и более агрессивной и бьющуюся о стенки коробки всё сильнее и сильнее.

Когда звёздное топливо перестаёт толкать материю, из которой состоит звезда, в разные стороны, гравитация железной рукой сжимает её примерно до размеров нашей планеты. Такой белый карлик примерно в 100 раз меньше и в миллион раз плотнее, чем Солнце. Это последняя фаза существования всех звёзд, включая и нашу. Кубик такой материи размером с кусок сахара будет весить как автомобиль, и при такой высочайшей плотности электроны окажутся очень близко друг к другу.

Волна, зажатая в небольшом пространстве, становится более резкой и отрывистой. Если речь идёт о квантовых волнах, это значит, что частица начинает двигаться быстрее (или, строго говоря, приобретает больший импульс). Так формулируется знаменитый принцип неопределённости Гейзенберга. Согласно ему, когда электроны оказываются плотно прижатыми друг к другу внутри белого карлика, их скорости очень сильно увеличиваются.

Этот квантовый эффект имеет для белых карликов огромные последствия. Но существует и ещё одно явление того же порядка, объяснить которое немного сложнее. [199] Chown M. We Need to Talk About Kelvin. — London: Faber & Faber, 2010. Ещё одним последствием корпускулярно-волнового дуализма является разделение всех составляющих материи на две группы: бозоны, которые любят большие компании, и фермионы, которые предпочитают жить поодиночке. Фермионы, к которым относится и электрон, действуют в соответствии с принципом Паули, который гласит, что два фермиона не могут одновременно находиться в одном и том же квантовом состоянии. [200] Принцип Паули объясняет существование различных атомов (строительных блоков Вселенной). Соответственно, именно благодаря ему наш мир так сложен и разнообразен. Согласно теории электромагнетизма, после испускания всей своей орбитальной энергии электроны атома должны переместиться на низкоэнергетическую орбиту как можно ближе к ядру. Если бы это действительно происходило, то атомы всех 92 элементов имели бы один и тот же размер и вели себя одинаково (ведь поведение атома определяется тем, как в нём организованы электроны). Согласно принципу Паули электроны занимают «ниши» вокруг ядра, а от числа электронов во внешней нише зависит то, как атом связывается с другими и формирует химические соединения.

Для электронов внутри белого карлика это означает, что две соседние частицы имеют различную скорость. Если скорость одной из них определяется принципом неопределённости Гейзенберга, то скорость соседней должна быть выше (как показывает практика, в два раза). Соответственно, соседняя с ней частица будет иметь в три раза бо́льшую скорость и так далее.

Представьте себе лестницу, где каждая ступень соответствует всё большей и большей скорости. Согласно принципу Паули каждую ступеньку может занимать только один электрон (на самом деле два, но это уже совсем другая история). [201] Электроны обладают внутренним спином — свойством, аналога которому в нашем повседневном мире не существует. Электроны не вращаются, но ведут себя так, как если бы делали это. Представим, что это вращение всё же происходит. Оно имеет минимальную допустимую в природе скорость и два возможных направления вращения — по часовой стрелке и против неё (или, говоря научным языком, вверх либо вниз). Соответственно, принцип Паули допускает существование в одной точке не одного, а двух электронов, имеющих одинаковую скорость. Принцип Паули утверждает, что электроны в белом карлике имеют невероятно высокие скорости, значительно превышающие те, которые предполагает принцип неопределённости Гейзенберга. Именно это стремительное движение электронов внутри звезды и противодействует сжатию под влиянием гравитации. Воздействие так называемого вырождения электронов поддерживает белый карлик в стабильном состоянии и не даёт ему схлопнуться до размеров меньше земных. [202] Почему именно электроны, а не атомные ядра противостоят гравитации в звёздах? Всё дело в том, что ядра большие и медленные, а значит, выделяют гораздо меньше энергии, чем быстро движущиеся электроны. Но почему свободные электроны вообще существуют? Обычно в холодном газе (как мы помним, в нашей звезде больше не происходят внутренние процессы) все три электрона располагаются вокруг ядра. Они находятся так близко друг к другу, что их орбиты оказываются больше, чем расстояние до ядра. Говоря научным языком, они ионизированы под давлением.

Итак, вот как обстояло положение дел в конце 1920-х годов. На выручку умирающим звёздам пришла квантовая теория, остановившая их падение в чёрные дыры с зияющей сингулярностью в самом сердце. Всё было под контролем. Всё было хорошо.

Вернее, лишь казалось.

Предел Чандрасекара

В августе 1930 года 19-летний индус поднялся в Бомбее на палубу корабля, направлявшегося в Англию. Целью его путешествия был Кембриджский университет. Я уже цитировал раньше его замечание о совершенстве чёрных дыр. Звали его Субраманьян Чандрасекар, и он был гением математики.

Читать дальше
Тёмная тема
Сбросить

Интервал:

Закладка:

Сделать


Маркус Чаун читать все книги автора по порядку

Маркус Чаун - все книги автора в одном месте читать по порядку полные версии на сайте онлайн библиотеки LibKing.




Гравитация. Последнее искушение Эйнштейна отзывы


Отзывы читателей о книге Гравитация. Последнее искушение Эйнштейна, автор: Маркус Чаун. Читайте комментарии и мнения людей о произведении.


Понравилась книга? Поделитесь впечатлениями - оставьте Ваш отзыв или расскажите друзьям

Напишите свой комментарий
x