Маркус Чаун - Гравитация. Последнее искушение Эйнштейна
- Название:Гравитация. Последнее искушение Эйнштейна
- Автор:
- Жанр:
- Издательство:неизвестно
- Год:2017
- ISBN:нет данных
- Рейтинг:
- Избранное:Добавить в избранное
-
Отзывы:
-
Ваша оценка:
Маркус Чаун - Гравитация. Последнее искушение Эйнштейна краткое содержание
Прославленный научно-популярный автор Маркус Чаун приглашает вас в увлекательное путешествие — с того момента, как в 1666 году гравитация была признана физической силой, до открытия гравитационных волн в 2015 году. Близится тектонический сдвиг в наших представлениях о физике, и эта книга рассказывает, какие вопросы ставит перед нами феномен гравитации.
Гравитация. Последнее искушение Эйнштейна - читать онлайн бесплатно полную версию (весь текст целиком)
Интервал:
Закладка:
Аркани-Хамеда считают одним из самых талантливых и оригинальных физиков-теоретиков в мире. Одетый в свою фирменную чёрную футболку, шорты и сандалии, с развевающимися длинными тёмными волосами, бурно жестикулирующий и исписывающий доску в аудитории уравнениями, он щедро делится своими знаниями и готов говорить о физике с каждым. Более того, он утверждает, что ни разу в жизни не отказывал студентам, хотевшим писать у него научные работы. [239] Wolchover N. Visions of Future Physics // Quanta Magazine. — 22 September 2015 ( https://www.quantamagazine.org/nima-arkani-hamed-and-the-future-of-physics-20150922/ ).
Тот факт, что Аркани-Хамед оказался в эпицентре физической науки XXI века, — настоящее чудо. В десятилетнем возрасте он едва не умер от лихорадки в горах между Ираном и Турцией, когда его семья в 1982 году бежала от режима Хомейни. Он ехал на одной лошади с матерью, и чтобы мальчик оставался в сознании, она показывала ему на сияющую ленту Млечного Пути на небе и обещала купить телескоп, когда они поселятся в безопасном месте. Этим местом оказалось Торонто, и там Нима получил обещанное, а затем, после Калифорнийского университета в Беркли и Гарварда, оказался в Институте перспективных исследований, где в последние годы своей жизни работали Эйнштейн и логик Курт Гёдель.
Кажется, будто энергия у Аркани-Хамеда не заканчивается никогда, и сейчас он использует её, чтобы убедить китайское правительство построить ускоритель частиц, превышающий по размерам БАК, для изучения природных явлений в десятикратно меньшем масштабе, но с десятикратно большей энергией. Если этот план осуществится, то «Великий коллайдер» можно будет запустить в работу уже в 2042 году. Вся теоретическая работа Аркани-Хамеда сконцентрирована на поиске более глубокой теории, чем теория гравитации Эйнштейна. А так как Эйнштейн утверждает, что гравитация — это всего лишь искривление пространства-времени, вместо попыток объяснить её природу Аркани-Хамед ищет истоки времени и пространства .
Как считают учёные, важную роль в этих поисках может сыграть одна крошечная константа. На расстоянии в 1,6×10 −35(то есть в десять миллионов миллиардов миллиардов раз меньше диаметра атома) метра сила притяжения оказывается сравнимой с тремя другими фундаментальными силами природы: электромагнитной силой, а также сильным и слабым ядерным взаимодействием. Существование планковской длины даже признавал сам Планк в 1900 году, пускай и по иным основаниям. Он полагал, что эта величина настолько универсальна, что «сохраняет своё значение во все времена и во всех культурах, даже внеземных и нечеловеческих». [240] Planck M. Über irreversible Strahlungsvorgänge // Annalen der Physik. — 1900. — Vol. 306, Issue 1. — P. 69–122.
Квантовая теория успешно описывает все негравитационные силы, а значит, для понимания того, что происходит на планковской длине или около неё, может потребоваться квантовое описание гравитации. В квантовой картине мира фундаментальные силы возникают в результате действия переносящих силу частиц, которые постоянно движутся туда-сюда, как теннисный мяч, отбиваемый игроками. Для электромагнитной силы носителем является фотон, для слабого ядерного взаимодействия — три векторных бозона, а для сильного ядерного взаимодействия — восемь глюонов. Поскольку частицы-переносчики являются виртуальными, то есть то появляются из вакуума, то исчезают в нём, то чем больше массы-энергии они содержат, тем короче оказывается их существование и тем меньшее расстояние они успевают пройти за это время. Соответственно, чем более массивной является частица-переносчик, тем меньше радиус воздействия силы, которую она переносит. К примеру, из-за массивности векторных бозонов слабое ядерное взаимодействие распространяется на куда меньшее расстояние, чем диаметр атомного ядра, в то время как фотоны, обладающие нулевой массой, позволяют электромагнитной силе преодолевать огромные расстояния.
Следовательно, для того чтобы квантовое описание гравитации было возможным, должна существовать частица — переносчик гравитационного взаимодействия. Теоретики окрестили эту гипотетическую частицу гравитоном, хотя даже само её существование остаётся под сомнением из-за множества связанных с ней затруднений. К примеру, сила взаимодействия зависит от того, как часто переносчики вступают в контакт с частицами, способными «почувствовать» силу. Но гравитационное взаимодействие очень слабо по сравнению с другими силами (например, сила притяжения между протоном и электроном в атоме водорода в 10 000 миллиардов миллиардов миллиардов миллиардов раз слабее, чем электромагнитная сила). А это значит, что гравитоны почти никогда не контактируют с материей. Для того чтобы столкнуться с гравитоном, детектору массой с планету Юпитер потребовалось бы больше времени, чем существует Вселенная. [241] Rothman T., Boughn S. Can gravitons be detected? — 2008. — arXiv:gr-qc/0601043v3 .
Но даже если не учитывать проблему с гравитонами, объединить теорию гравитации Эйнштейна с квантовой теорией всё равно очень сложно. Кажется, будто они совершенно несовместимы. Общая теория относительности говорит об определённости и предсказывает будущее со 100%-ной точностью, в то время как квантовая теория описывает вероятность существования множества альтернативных вариантов будущего. Однако, как верно замечает Дэвид Тонг из Кембриджского университета, несмотря на это, физики сумели предложить квантовое описание для всех прочих фундаментальных сил природы.
Квантовая теория отрицает само существование точных местоположений в пространстве и траекторий тел, которые по нему движутся, а ведь именно эти величины являются краеугольным камнем теории гравитации Эйнштейна. Более того, квантовая теория рассматривает Вселенную на микроуровне как дискретную, в то время как для теории гравитации она непрерывна. Если и этих аргументов вам недостаточно, подумайте вот о чём: негравитационные силы Вселенной действуют в пространстве-времени, в то время как гравитация сама является пространством-временем. «Это различие может показаться несущественным, — пишет Тонг, — но чувствуется, что с гравитацией всё же что-то не так».
Планковская длина важна не только потому, что на ней сила гравитационного взаимодействия становится сравнимой с другими силами и, соответственно, требует квантового объяснения. Согласно квантовой теории, на длине Планка квантовые флуктуации так велики и локализованы, что, когда энергия возникает из ниоткуда, это происходит в пределах её собственного горизонта событий . Иными словами, она тут же схлопывается, формируя чёрную дыру. Очевидно, что это звучит нелепо. Если бы подобное действительно происходило, то пространство-время на планковской длине было бы постоянно скрыто от нашего взора внутри чёрной дыры, а крошечные чёрные дыры то и дело возникали бы вокруг нас в воздухе.
Читать дальшеИнтервал:
Закладка: