Маркус Чаун - Гравитация. Последнее искушение Эйнштейна
- Название:Гравитация. Последнее искушение Эйнштейна
- Автор:
- Жанр:
- Издательство:неизвестно
- Год:2017
- ISBN:нет данных
- Рейтинг:
- Избранное:Добавить в избранное
-
Отзывы:
-
Ваша оценка:
Маркус Чаун - Гравитация. Последнее искушение Эйнштейна краткое содержание
Прославленный научно-популярный автор Маркус Чаун приглашает вас в увлекательное путешествие — с того момента, как в 1666 году гравитация была признана физической силой, до открытия гравитационных волн в 2015 году. Близится тектонический сдвиг в наших представлениях о физике, и эта книга рассказывает, какие вопросы ставит перед нами феномен гравитации.
Гравитация. Последнее искушение Эйнштейна - читать онлайн бесплатно полную версию (весь текст целиком)
Интервал:
Закладка:
Изучив общую теорию относительности, наш физик признаёт существование притяжения, действующего на длинных дистанциях в соответствии с законом обратных квадратов и заставляющего крупные тела двигаться по орбитам вокруг ещё более крупных тел. Нам известно, что планеты вращаются вокруг своих звёзд, а галактики могут двигаться вокруг других галактик. Но наш физик ничего об этом не знает, ведь он заперт в комнате без окон. Тем не менее ему удаётся логически вычислить существование Вселенной.
Частицу со спином 2 ещё никому не удалось обнаружить, и даже если она существует, есть основания полагать, что в ближайшем будущем мы её всё равно не увидим. Однако она соответствует описанию гравитона, гипотетической частицы — переносчика силы притяжения. [252] См. главу 8.
Поскольку у физиков имеется теория гравитации, в соответствии с которой сила притяжения переносится гравитоном и которая выступает основой для общей теории относительности, в каком-то смысле они уже создали квантовую теорию гравитации.
К сожалению, эта теория — всего лишь проекция квантовой теории на мир больших величин и низких энергий, а не более глубокая её версия, применимая к миру на уровне планковской длины.
Наконец, наш физик рассматривает последний спин — 3/2. Частицы с таким спином обеспечивают существование суперсимметрии , при которой все частицы с полуцелым спином (фермионы) считаются лицевой стороной частиц с целым спином (бозонов).
На данный момент у нас нет экспериментального подтверждения того, что природа действительно использует частицы со спином 3/2. Но, учитывая то, что все остальные виды спинов действительно существуют, есть подозрение, что имеется и этот. Согласно данной гипотезе, к примеру, у электрона есть суперсимметричный брат-близнец, называемый селектроном. Суперпартнёры известных частиц считаются хорошими кандидатами на звание составляющих частиц тёмной материи Вселенной, масса которой, как известно, в шесть раз превышает массу видимых звёзд и галактик. [253] Главный кандидат на роль частицы тёмной материи — это суперсимметричная частица с наименьшей массой (нейтралино), которая представляет собой суперпозицию трёх частиц: фотино, хиггсино и зино.
Учёные предполагают, что мы ещё не обнаружили суперсимметричные частицы, потому что они очень массивны и для их создания необходимо больше энергии, чем сейчас может дать столкновение частиц в Большом адронном коллайдере.
Итак, наш физик рассмотрел частицы со всеми возможными видами спина и вычислил их поведение. Но есть и ещё один вывод, который он может сделать из специальной теории относительности и квантовой теории. Они предполагают, что каждая субатомная частица должна иметь партнёра с противоположным электрическим зарядом или спином. Каждый раз, когда в результате квантовой флуктуации вакуума появляется частица, вместе с ней возникает и античастица. [254] Почему мы живём во Вселенной, наполненной материей, — одна из величайших научных загадок. Учёные могут лишь предполагать, что во время Большого взрыва произошёл какой-то перекос законов физики, из-за которых материя получила преимущество или часть антиматерии была уничтожена.
Например, отрицательно заряженный электрон всегда формируется вместе с положительно заряженным позитроном.
Стандартная модель
Вот полный список элементов, из которых состоит Вселенная: 12 базовых строительных блоков (шесть кварков и шесть лептонов), 12 частиц-переносчиц (фотон для электромагнитной силы, три векторных бозона для слабого ядерного взаимодействия и восемь глюонов для сильного), бозон Хиггса и античастицы. Все вместе они составляют Стандартную модель физики частиц, результат 350-летнего труда учёных. Не будет преувеличением сказать, что Стандартная модель и общая теория относительности описывают весь мир.
Самое удивительное в Стандартной модели то, что такое небольшое количество ингредиентов, соединяющихся таким небольшим количеством способов, создаёт столь многое вокруг нас. Готтфрид Лейбниц, немецкий математик XVII века, замечал: «Бог выбрал лучший из миров, который наиболее прост для понимания и наиболее богат на явления». [255] Leibniz G. Discours de métaphysique. — 1686. (Рус. пер.: Лейбниц Г. Рассуждение о метафизике. — 1686.)
Удивительно, но наш физик, запертый в комнате без окон всего с двумя досками и куском мела, смог вычислить основные свойства этого мира. «Физика ужасно ограничена квантовой теорией и теорией относительности, — говорит Аркани-Хамед. — Они делают Вселенную практически неизбежной».
Практически — потому что эти ограничения не определяют массы фундаментальных частиц, а также общее количество кварков и лептонов. Обычная материя состоит всего из четырёх частиц: верхнего кварка, нижнего кварка, электрона и электронного нейтрино. Например, протон в ядре атома формируется из двух верхних и одного нижнего кварка, а нейтрон — из двух нижних и одного верхнего. Но на этом природа не остановилась. Она создала более тяжёлые версии четырёх базовых частиц: странный кварк, очарованный кварк, мюон и мюонное нейтрино. Затем последовали и их утяжелённые версии: прелестный кварк, истинный кварк, тау и тау-нейтрино. Эти частицы не играют практически никакой роли в современной Вселенной, так как энергия, необходимая для их формирования, существовала лишь в первые доли секунды после Большого взрыва. Как шутил американский физик И. А. Раби, непонятно, кто их заказывал. [256] На самом деле этот лауреат Нобелевской премии польского происхождения спросил: «Кто это заказывал?» — в 1936 году, когда открыл мюон — более тяжёлую версию электрона.
Стандартная модель не объясняет, зачем природа наделила каждый свой строительный блок двумя партнёрами, а также почему распределила между ними массу таким образом, как мы это наблюдаем. Можно предположить, что это не последнее слово природы, а лишь приблизительное видение более глубоких процессов, которые нам ещё предстоит открыть. Но эти отклонения не должны отвлекать нас от важного факта: принципы специальной теории относительности и квантовой теории налагают на вероятности такие строгие ограничения, что в результате определяют почти всё в физическом мире. «Интересно, был ли у Бога хоть какой-то выбор при создании мира?» — писал Эйнштейн. Квантовая теория и специальная теория относительности подсказывают нам, что ответ на этот вопрос отрицательный.
Как уже упоминалось в начале этой главы, некоторые люди считают физиков-теоретиков фантазёрами, которые заняты лишь тем, что воображают удивительные и странные вещи. Проверить их правоту экспериментальным путём невозможно, а значит, нельзя и доказать, что они врут. Но тот факт, что специальная теория относительности и квантовая теория почти полностью описывают процессы в окружающей нас Вселенной, может означать лишь одно: в целом они верны. Это, в свою очередь, делает их тугой смирительной рубашкой, сковывающей действия физиков, которые пытаются докопаться до более глубокой теории. Квантовая теория и специальная теория относительности оставляют так мало места для манёвра, что двигаться в нём почти невозможно. «Почти все твои попытки обречены на провал. Большинство теорий, рождаемых физиками, умирает во младенчестве», — говорит Аркани-Хамед.
Читать дальшеИнтервал:
Закладка: