Ричард Фейнман - Том 1. Механика, излучение и теплота
- Название:Том 1. Механика, излучение и теплота
- Автор:
- Жанр:
- Издательство:неизвестно
- Год:неизвестен
- ISBN:нет данных
- Рейтинг:
- Избранное:Добавить в избранное
-
Отзывы:
-
Ваша оценка:
Ричард Фейнман - Том 1. Механика, излучение и теплота краткое содержание
Том 1. Механика, излучение и теплота - читать онлайн бесплатно полную версию (весь текст целиком)
Интервал:
Закладка:
Но откуда мы знаем, что те правила, которые мы «ощущаем», справедливы на самом деле? Ведь мы не способны толково разобрать ход игры. Существует, грубо говоря, три способа проверки. Во-первых, мыслимы положения, когда природа устроена (или мы ее устраиваем) весьма просто, всего из нескольких частей; тогда можно точно предсказать все, что случится, проверив тем самым правила. (В углу доски может оказаться всего несколько фигур, и все их движения легко себе представить.)
Есть и второй довольно неплохой путь проверки правил: надо из этих правил вывести новые, более общие. Скажем, слон ходит только по диагонали; значит, сколько бы он ни ходил, он всегда окажется, например, на черном поле. Стало быть, не вникая в детали, наши представления о движении слона всегда можно проверить по тому, остается ли он все время на черном поле. Конечно, не исключено, что внезапно слон очутится на белом поле: после того как его побили, пешка прошла на последнюю горизонталь и превратилась в белопольного слона. Так же и в физике. Долгое время мы располагаем правилом, которое превосходно работает повсюду, даже когда детали процесса нам неизвестны, и вдруг иногда всплывает новое правило . С точки зрения физических основ самые интересные явления происходят в новых местах, там, где правила не годятся, а не в тех местах, где они действуют ! Так открываются новые правила.
Есть и третий способ убедиться, что наши представления об игре правильны; мало оправданный по существу, он, пожалуй, самый мощный из всех способов. Это путь грубых приближений . Мы можем не знать, почему Алехин пошел именно этой фигурой . Но в общих чертах мы можем понимать, что он, видимо, собирает все фигуры для защиты короля, и сообразить, что в сложившихся обстоятельствах это самое разумное. Точно так же мы часто более или менее понимаем природу, хотя не знаем и не понимаем каждого хода отдельной фигуры .
Когда-то все явления природы грубо делили на классы — теплота, электричество, механика, магнетизм, свойства веществ, химические явления, свет (или оптика), рентгеновские лучи, ядерная физика, тяготение, мезонные явления и т. д. Цель-то, однако, в том, чтобы понять всю природу как разные стороны одной совокупности явлений. В этом задача фундаментальной теоретической физики нынешнего дня: открыть законы, стоящие за опытом, объединить эти классы . Исторически всегда рано или поздно удавалось их слить, но проходило время, возникали новые открытия, и опять вставала задача их включения в общую схему. Однажды уже возникла было слитная картина мира — и вдруг были открыты лучи Рентгена... Со временем произошло новое слияние... и тут обнаружили существование мезонов. Поэтому на любой стадии игра выглядит беспорядочно, незаконченно. Многое бывает объяснено с единой точки зрения, но всегда какие-то проволочки и нитки все же болтаются, всегда где-нибудь торчит что-то несуразное. Таково сегодняшнее положение вещей, которое мы попытаемся описать.
Вот взятые из истории примеры слияния. Во-первых, теплоту удалось свести к механике . Чем сильнее движение атомов, тем больше запас тепла системы; выходит, что теплота, да и все температурные эффекты, могут быть поняты с помощью законов механики . Другое величественное объединение было отпраздновано, когда обнаружилась связь между электричеством, магнетизмом и светом. Оказалось, что это разные стороны одной сущности; сейчас мы называем ее электромагнитным полем. А химические явления, свойства различных веществ и поведение атомных частиц объединились квантовой химией .
Возникает естественный вопрос: будет ли возможно в конце концов все слить воедино и обнаружить, что весь наш мир есть просто различные стороны какой-то одной вещи? Этого никто не знает. Мы только знаем, что по мере нашего продвижения вперед то и дело удается что-то с чем-то объединить, а после опять что-то перестает укладываться в общую картину, и мы заново принимаемся раскладывать части головоломки, надеясь сложить из них что-нибудь целое. А сколько частей в головоломке, и будет ли у нее край — это никому не известно. И не будет известно, пока мы не сложим всей картины, если только когда-нибудь это вообще будет сделано. Здесь мы хотим только показать, насколько далеко зашел процесс слияния, как сегодня обстоит дело с объяснением основных явлений за счет наименьшего количества принципов. Или, выражаясь проще, из чего все состоит и сколько всего таких элементов ?
§ 2. Физика до 1920 года
Нам было бы нелегко начать прямо с сегодняшних взглядов. Посмотрим лучше, как выглядел мир примерно в 1920 г., а затем сотрем с этой картины лишнее.
До 1920 г. картина была примерно такова. «Сцена», на которой выступает Вселенная, — это трехмерное пространство , описанное еще Евклидом; все изменяется в среде, называемой временем . Элементы, выступающие на сцене, — это частицы , например атомы; они обладают известными свойствами, скажем свойством инерции: когда частица движется в каком-то направлении, то делает она это до тех пор, пока на нее не подействуют силы . Следовательно, второй элемент — это силы ; считалось, что они бывают двух сортов. Первый, чрезвычайно запутанный тип — сила взаимодействия, т. е. сила, скрепляющая атомы в разных их комбинациях; она, например, и решает, быстрее или медленнее начнет растворяться соль при нагревании. Другой же сорт сил — это взаимодействие на далеких расстояниях — притяжение, спокойное и ровное; оно меняется обратно пропорционально квадрату расстояния и именуется тяготением , или гравитацией . Закон ее известен и прост. Но почему тела остаются в движении, начав двигаться, или отчего существует закон тяготения — это было неизвестно.
Продолжаем наше описание природы. С этой точки зрения газ, как, впрочем, и все вещество, это мириады движущихся частиц. Таким образом, многое из увиденного нами на морском берегу теперь запросто увязывается в единое целое. Давление сводится к ударам атомов о стенки; снос атомов (их движение в одну сторону) — это ветер; хаотические внутренние движения — это теплота . Волны — избыток давления, места, где собралось слишком много частиц; разлетаясь, они нагнетают в новых местах такие же скопления частиц; эти волны избытка плотности суть звуки . Понять все это было немаловажным достижением (кое о чем мы уже писали в предыдущей главе).
Какие сорта частиц существуют? В то время считалось, что их 92; восемьдесят девять типов атомов были к тому времени открыты. Каждый тип имел свое название.
Дальше возникала проблема: что такое силы близкодействия . Почему атом углерода притягивает один, в лучшем случае два атома кислорода, но не более? В чем механизм взаимодействия между атомами? Уж не тяготение ли это? Нет. Оно чересчур слабо для этого. Надо представить себе силу, сходную с тяготением, тоже обратно пропорциональную квадрату расстояния, но несравненно более мощную. У нее есть еще одно отличие. Тяготение — это всегда притяжение; допустим теперь, что бывают «предметы» двоякого сорта , и эта новая сила (имеется, конечно, в виду электричество) обладает таким свойством, что одинаковые сорта отталкиваются , а разные притягиваются . «Предмет», несущий с собой это сильное взаимодействие, называется зарядом .
Читать дальшеИнтервал:
Закладка: