Ричард Фейнман - 3. Излучение. Волны. Кванты

Тут можно читать онлайн Ричард Фейнман - 3. Излучение. Волны. Кванты - бесплатно полную версию книги (целиком) без сокращений. Жанр: sci-phys. Здесь Вы можете читать полную версию (весь текст) онлайн без регистрации и SMS на сайте лучшей интернет библиотеки ЛибКинг или прочесть краткое содержание (суть), предисловие и аннотацию. Так же сможете купить и скачать торрент в электронном формате fb2, найти и слушать аудиокнигу на русском языке или узнать сколько частей в серии и всего страниц в публикации. Читателям доступно смотреть обложку, картинки, описание и отзывы (комментарии) о произведении.
  • Название:
    3. Излучение. Волны. Кванты
  • Автор:
  • Жанр:
  • Издательство:
    неизвестно
  • Год:
    неизвестен
  • ISBN:
    нет данных
  • Рейтинг:
    4/5. Голосов: 101
  • Избранное:
    Добавить в избранное
  • Отзывы:
  • Ваша оценка:
    • 80
    • 1
    • 2
    • 3
    • 4
    • 5

Ричард Фейнман - 3. Излучение. Волны. Кванты краткое содержание

3. Излучение. Волны. Кванты - описание и краткое содержание, автор Ричард Фейнман, читайте бесплатно онлайн на сайте электронной библиотеки LibKing.Ru

3. Излучение. Волны. Кванты - читать онлайн бесплатно полную версию (весь текст целиком)

3. Излучение. Волны. Кванты - читать книгу онлайн бесплатно, автор Ричард Фейнман
Тёмная тема
Сбросить

Интервал:

Закладка:

Сделать

3. Излучение. Волны. Кванты

Глава 26

ОПТИКА. ПРИНЦИП НАИМЕНЬШЕГО ВРЕМЕНИ

§ 1. Свет

§ 2. Отражение и преломление

§ 3. Принцип наименьшего времени Ферма

§ 4. Применения принципа Ферма

§ 5. Более точная формулировка принципа Ферма

§ 6, Квантовый механизм

§ 1. Свет

Эта глава — первая из посвященных элек­тромагнитному излучению. Свет, с помощью которого мы видим, составляет только неболь­шую часть широкого спектра явлений одной природы, причем разные части спектра характе­ризуются разными значениями определенной физической величины. Эту величину называют «длиной волны». По мере того, как она пробегает значения в пределах спектра видимого света, цвет световых лучей меняется от красного до фиолетового. Систематическое изучение спектра от длинных волн к коротким лучше всего начать с так называемых радиоволн. В технике радио­волны получают в широком диапазоне длин волн и даже более длинные, чем те, которые исполь­зуются в обычном радиовещании. В радиове­щании применяются волны длиной около 500 м, за ними идут так называемые короткие волны, далее радиолокационный диапазон, миллиметровый диапазон и т. д. На самом деле между разными диапазонами нет никаких границ, природа их не создала. Числа, кото­рые соответствуют разным диапазонам, и, конечно, сами названия диапазонов весьма условны.

Далее, пройдя долгий путь через милли­метровый диапазон, мы придем к инфракрасным волнам, а оттуда к спектру видимого света. Спустившись за его границы, мы попадем в ультрафиолетовую область. За ультрафиоле­товой областью начинаются рентгеновские лучи, но границу между ними точно определить мы не можем, она где-то около 10 -8м, или 10 -2мкм. Это область мягких рентгеновских лучей, за нею идет обычное рентгеновское излучение, затем жесткое излучение, потом g-излучение и так ко все меньшим значениям величины, которую мы назвали дли­ной волны.

В пределах обширного диапазона длин волн имеется не ме­нее трех областей, где возможны весьма интересные приближе­ния. Существует, например, область, где длина волны мала по сравнению с размерами приборов, с помощью которых изучают такие волны; более того, энергия фотонов, если говорить на языке квантовой механики, меньше порога чувствительности приборов. В этой области первое грубое приближение дает ме­тод, называемый геометрической оптикой. С другой стороны, когда длина волны становится порядка размеров прибора (та­кие условия проще создать для радиоволн, чем для видимого света), а энергия фотонов по-прежнему ничтожна, применяется другое очень полезное приближение, в котором учтены волновые свойства света, но снова пренебрегается эффектами квантовой механики. Это приближение основано на классической теории электромагнитного излучения; оно будет обсуждаться в одной из последующих глав. Наконец, для еще более коротких длин волн, когда энергия фотонов велика по сравнению с чувстви­тельностью приборов и от волнового характера излучения мож­но отвлечься, снова возникает простая картина. Такую фотон­ную картину мы рассмотрим только в общих чертах. Полную теорию, описывающую все на основе единой модели, вы узнаете гораздо позже.

В этой главе мы ограничимся той областью, для которой эф­фективна геометрическая оптика и, как будет видно в дальней­шем, длина волны и фотонный характер света роли не играют. Мы даже не зададим вопроса, а что такое свет, и только опишем его поведение в масштабе длин и времен, много больших, чем некоторые характерные величины. Из сказанного ясно, что речь пойдет об очень грубом приближении, потом нам придется «оту­чаться» от изложенных здесь методов. Но отучимся мы легко, потому что почти сразу перейдем к более точному анализу.

Геометрическая оптика, хотя и является приближением, представляет огромный интерес с технической и исторической точек зрения. На истории этого вопроса мы намеренно остано­вимся подробнее, чтобы дать представление о развитии физиче­ской теории или физической идеи вообще.

Начнем с того, что свет знаком каждому и известен с неза­памятных времен. Возникает первая проблема: каков механизм видения света? Теорий было много, но в конце концов, они све­лись к одной: существует нечто, попадающее в глаз при отра­жении от предметов. Эта идея существует уже давно и столь привычна, что теперь даже трудно себе представить другие идеи, предложенные, однако, весьма умными людьми, напри­мер, что нечто выходит из глаза и чувствует окружающие предметы. Были и другие важные наблюдения: свет распространяет­ся из одной точки в другую по прямой линии, если ничто ему не препятствует и лучи света не взаимодействуют друг с другом. Иными словами, свет распространяется в комнате во всевозмож­ных направлениях, но тот луч, который перпендикулярен на­правлению нашего взгляда, не воздействует на лучи, идущие к нам от какого-либо предмета. В свое время это был сильнейший аргумент против корпускулярной теории света и его использо­вал Гюйгенс. Но если представить себе свет в виде пучка летя­щих стрел, то как могли бы тогда другие стрелы легко про­низывать его? На самом деле ценность таких схоластических доказательств весьма сомнительна. Всегда можно сказать, что свет состоит именно из таких стрел, которые свободно проходят друг через друга!

§ 2. Отражение и преломление

Все сказанное дает представление об основной идее геомет­рической оптики. Теперь перейдем к ее количественному описа­нию. До сих пор мы разбирали случай, когда свет распростра­няется между двумя точками по прямой линии. Посмотрим те­перь, что происходит, когда свет на своем пути наталкивается на какой-то объект (фиг. 26.1). Простейший объект — это зер­кало, и в этом случае мы знаем такой закон: свет, попадая на зеркало, не проходит через него, а отражается и снова ухо­дит по прямой линии, причем направление прямой меняется при изменении наклона зеркала. Еще в древности люди были заняты вопросом: каково соотношение между этими двумя углами? Это очень простое соотношение, и найдено оно было дав­ным-давно. Падающий на зеркало луч после отражения движет­ся по такому пути, что углы между каждым лучом и зеркалом равны. По ряду соображений углы удобно отсчитывать от нор­мали к поверхности зеркала. Тогда так называемый закон от­ражения гласит:

q i=q r. (26.1)

В отличие от простого закона отражения более сложный закон возникает при переходе света из одной среды в другую, например из воздуха в воду; здесь тоже свет движется не по прямой. Траектория луча в воде образует некоторый угол с траекторией в воздухе.

Читать дальше
Тёмная тема
Сбросить

Интервал:

Закладка:

Сделать


Ричард Фейнман читать все книги автора по порядку

Ричард Фейнман - все книги автора в одном месте читать по порядку полные версии на сайте онлайн библиотеки LibKing.




3. Излучение. Волны. Кванты отзывы


Отзывы читателей о книге 3. Излучение. Волны. Кванты, автор: Ричард Фейнман. Читайте комментарии и мнения людей о произведении.


Понравилась книга? Поделитесь впечатлениями - оставьте Ваш отзыв или расскажите друзьям

Напишите свой комментарий
x