Ричард Фейнман - Том 1. Механика, излучение и теплота
- Название:Том 1. Механика, излучение и теплота
- Автор:
- Жанр:
- Издательство:неизвестно
- Год:неизвестен
- ISBN:нет данных
- Рейтинг:
- Избранное:Добавить в избранное
-
Отзывы:
-
Ваша оценка:
Ричард Фейнман - Том 1. Механика, излучение и теплота краткое содержание
Том 1. Механика, излучение и теплота - читать онлайн бесплатно полную версию (весь текст целиком)
Интервал:
Закладка:
Вывод : каждая обратимая машина, как бы она ни действовала, опуская 1 кг на 1 м , всегда подымает 3 кг на одну и ту же высоту X . Ясно, что мы доказали очень полезный всеобщий закон. Но возникает вопрос: чему равно X ?
Пусть у нас есть обратимая машина, способная поднимать 3 кг за счет 1 кг на высоту X . Поместим три шара на стеллаж (как на фиг. 4.2).
Фиг. 4.2. Обратимая машина. а — начальное положение; б — загрузка шаров; в — . 1 кг поднимает 3 кг на высоту X; г — разгрузка шаров; д — восстановление; е — конечное положение.
Четвертый лежит на подставке в одном метре от пола. Машина может поднять три шара, опустив один шар на 1 м . Устроим подвижную платформу с тремя полками высотой X , и пусть высота полок стеллажа тоже будет X (фиг. 4.2,а). Перекатим сперва шары со стеллажа на полки платформы (фиг. 4.2,б); предположим, что для этого энергии не понадобится, потому что полки и стеллаж находятся на одной высоте. Затем включим обратимую машину: она скатит одиночный шар на пол и подымет платформу на высоту X (фиг. 4.2,в). Но мы сконструировали платформу столь остроумно, что шары опять оказались в точности на уровне полок стеллажа. Разгрузим же шары с платформы на стеллаж (фиг. 4.2,г). После разгрузки машина вернется в первоначальное положение. Теперь уже три шара лежат на трех верхних полках стеллажа, а четвертый шар — на полу. Но смотрите, какая странная вещь: по существу два шара мы не поднимали вовсе, ведь на полках 2 и 3 шары как лежали вначале, так лежат и теперь. В итоге поднялся только один шар , но зато на высоту 3Х. Если бы высота ЗХ оказалась больше 1 м , то можно было бы опустить шар, чтобы вернуть машину к начальным условиям (фиг. 4.2,е) и начать работу сначала. Значит, высота 3Х не может быть больше 1 м , ибо начнется вечное движение. Точно так же можно доказать, что 1 м не может быть больше 3Х: машина обратима, пустим ее назад и докажем. Итак, 3Х ни больше, ни меньше 1 м . Мы открыли при помощи одних только рассуждений закон: Х= 1/ 3 м . Обобщить его легко; 1 кг падает при работе обратимой машины с некоторой высоты; тогда машина способна поднять р кг на 1/р высоты. Если, другими словами, 3 кг умножить на высоту их подъема (X), то это равно 1 кг , умноженному на высоту его падения (1 м ). Помножив все грузы в машине на высоту, на которой они лежат, дайте машине поработать и опять помножьте все веса на их высоты подъема; в итоге должно выйти то же самое . (Мы перешли от случая, когда двигался только один груз, к случаю, когда за счет опускания одного груза поднимается несколько грузов. Но это, надеюсь, понятно?) Назовем сумму весов, умноженных на высоту, потенциальной энергией тяготения , т. е. энергией, которой обладает тело вследствие своего положения в пространстве по отношению к земле. Формула для энергии тяготения, пока тело не слишком далеко от земли (вес при подъеме ослабляется), такова:
(4.3)
Не правда ли, очень красивое рассуждение? Вопрос только в том, справедливо ли оно. (Ведь, в конце концов, природа не обязана следовать нашим рассуждениям.) Например, не исключено, что в действительности вечное движение возможно. Или другие предположения ошибочны. Или мы просмотрели что-то в своих рассуждениях. Поэтому их непременно нужно проверить. И вот — справедливость их подтверждает опыт .
Потенциальная энергия — это общее название для энергии, связанной с расположением по отношению к чему-либо. В данном частном случае это — потенциальная энергия тяготения . Если же производится работа против электрических сил, а не сил тяготения, если мы «поднимаем» заряды «над» другими зарядами с помощью многочисленных рычагов, тогда запас энергии именуется электрической потенциальной энергией . Общий принцип состоит в том, что изменения энергии равны силе, умноженной на то расстояние, на котором она действует:
(4.4)
По мере чтения курса мы еще не раз будем возвращаться к другим видам потенциальной энергии.
Принцип сохранения энергии во многих обстоятельствах оказывается очень полезен при предсказании того, что может произойти. В средней школе мы учили немало правил о блоках и рычагах. Мы можем теперь убедиться, что все эти «законы» сводятся к одному , и нет нужды запоминать 75 правил. Вот вам простой пример: наклонная плоскость. Пусть это треугольник со сторонами 3, 4, 5 (фиг. 4.3).
Фиг. 4.3. Наклонная плоскость.
Подвесим к блочку груз весом 1 кг и положим его на плоскость, а с другой стороны подвесим груз W .
Мы хотим знать, какова должна быть тяжесть W , чтобы уравновесить груз 1 кг . Рассуждаем так. Если грузы W и 1 кг уравновешены, то это — обратимое состояние, и веревку можно двигать вверх-вниз. Пусть же вначале (фиг. 4.3,а) 1 кг находится внизу плоскости, а груз W — наверху. Когда W соскользнет вниз, груз 1 кг окажется наверху, а W опустится на длину склона (фиг. 4.3,6), т. е. на 5 м . Но ведь мы подняли 1 кг только на высоту 3 м , хотя опустили W на 5 м . Значит, W = 3/ 5 кг . Заметьте, что этот ловкий вывод получен не из разложения сил, а из сохранения энергии . Ловкость, впрочем, относительна. Существует другой вывод, куда красивее. Он придуман Стевином и даже высечен на его надгробии. Фиг. 4.4 объясняет, почему должно получиться 3/ 5 кг : цепь не вращается и нижняя ее часть уравновешена сама собой, значит сила тяги пяти звеньев с одной стороны должна уравнять силу тяги трех звеньев с другой (по длине сторон).
Фиг. 4.4. Это выгравировано на надгробии Стевина.
Глядя на диаграмму, становится очевидно, что W = 3/ 5 кг . (Неплохо было бы, если бы когда-нибудь что-нибудь подобное высекли и на вашем надгробном камне.)
А вот задача посложнее: домкрат, показанный на фиг. 4.5.
Фиг. 4.5. Домкрат.
Посмотрим, как в таком случае применять этот принцип. Для вращения домкрата служит ручка длиной 1 м , а нарезка винта имеет 4 витка на 1 см . Какую силу нужно приложить к ручке, чтобы поднять 1 т ? Желая поднять 1 т на 1 см , мы должны обойти домкрат четырежды, каждый раз делая по 6,28 м (2πr), а всего 25,12 м . Используя различные блоки и т. п., мы действительно можем поднять 1 т с помощью неизвестного груза W, приложенного к концу ручки. Ясно, что W равно примерно 400 г . Это — следствие сохранения энергии.
Читать дальшеИнтервал:
Закладка: